×

On characterizations of classical polynomials. (English) Zbl 1108.33008

The author presents a unified study of the classical discrete polynomials and \(q\)-polynomials of the \(q\)-Hahn tableau by using the difference calculus on linear-type lattices. He obtains several characterization theorems for the classical discrete and \(q\)-polynomials of the \(q\)-Hahn tableau. The classical continuous case can be obtained from the \(q\)-case by taking the limit \(q\leftarrow 1^{-}\). He also discusses some problems related to the characterization by F. Marcellán et al. [Acta Appl. Math. 34, 283–303 (1994; Zbl 0793.33009)].

MSC:

33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
33D45 Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.)

Citations:

Zbl 0793.33009
Full Text: DOI

References:

[1] Al-Salam, W. A., Characterization theorems for orthogonal polynomials, (Nevai, P., Orthogonal Polynomials: Theory and Practice, NATO ASI Series C, vol. 294 (1990), Kluwer Academic Publisher: Kluwer Academic Publisher Dordrecht), 1-24 · Zbl 0133.32305
[2] Al-Salam, W. A.; Chihara, T. S., Another characterization of the classical orthogonal polynomials, SIAM J. Math. Anal., 3, 65-70 (1972) · Zbl 0238.33010
[3] R. Álvarez-Nodarse, Polinomios hipergeométricos y \(q\); R. Álvarez-Nodarse, Polinomios hipergeométricos y \(q\)
[4] Álvarez-Nodarse, R.; Arvesú, J., On the \(q\)-polynomials in the exponential lattice \(x(s) = c_1 q^s + c_3\), Integral Transform. Special Funct., 8, 299-324 (1999) · Zbl 0956.33009
[5] Álvarez-Nodarse, R.; Medem, J. C., \(q\)-Classical polynomials and the \(q\)-Askey and Nikiforov-Uvarov Tableaus, J. Comput. Appl. Math., 135, 197-223 (2001) · Zbl 1024.33013
[6] Atakishiyev, N. M.; Rahman, M.; Suslov, S. K., On classical orthogonal polynomials, Constr. Approx., 11, 181-226 (1995) · Zbl 0837.33010
[7] Bochner, S., Über Sturm-Liouvillesche polynomsysteme, Math. Z., 29, 730-736 (1929) · JFM 55.0260.01
[8] Chihara, T., An Introduction to Orthogonal Polynomials (1978), Gordon and Breach: Gordon and Breach New York · Zbl 0389.33008
[9] Cryer, C. W., Rodrigues’ formula and the classical orthogonal polynomials, Boll. Un. Mat. Ital., 25, 3, 1-11 (1970) · Zbl 0189.34202
[10] García, A. G.; Marcellán, F.; Salto, L., A distributional study of discrete classical orthogonal polynomials, J. Comput. Appl. Math., 57, 147-162 (1995) · Zbl 0853.33009
[11] Grosswald, E., Bessel Polynomials. Lecture Notes in Mathematics, vol. 698 (1978), Springer: Springer Berlin · Zbl 0416.33008
[12] Hahn, W., Über die Jacobischen polynome und zwei verwandte polynomklassen, Math. Z., 39, 634-638 (1935) · JFM 61.0377.01
[13] Hahn, W., Über orthogonalpolynomen die \(q\)-differentialgleichungen genügen, Math. Nachr., 2, 4-34 (1949) · Zbl 0031.39001
[14] Hildebrandt, E. H., Systems of polynomials connected with the Charlier expansion and the Pearson differential and difference equation, Ann. Math. Statist., 2, 379-439 (1931) · Zbl 0004.34402
[15] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its \(q\); R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its \(q\)
[16] T.H. Koornwinder, Compact quantum groups and \(q\); T.H. Koornwinder, Compact quantum groups and \(q\) · Zbl 0821.17015
[17] Lesky, P., Über Polynomsysteme die Sturm-Liouvilleschen differenzengleichungen genügen, Math. Z., 78, 439-445 (1962) · Zbl 0107.05403
[18] Marcellán, F.; Álvarez-Nodarse, R., On the Favard Theorem and their extensions, J. Comput. Appl. Math., 127, 231-254 (2001) · Zbl 0970.33008
[19] Marcellán, F.; Branquinho, A.; Petronilho, J., Classical orthogonal polynomials: a functional approach, Acta Appl. Math., 34, 283-303 (1994) · Zbl 0793.33009
[20] Marcellán, F.; Petronilho, J., On the solution of some distributional differential equations: existence and characterizations of the classical moment functionals, Integral Transform. Special Funct., 2, 185-218 (1994) · Zbl 0832.33006
[21] Medem, J. C., The quasi-orthogonality of the derivatives of semi-classical polynomials, Indag. Math. New Ser., 13, 363-387 (2002) · Zbl 1024.42012
[22] Medem, J. C., A family of singular semi-classical functionals, Indag. Math. New Ser., 13, 351-362 (2002) · Zbl 1031.42025
[23] Medem, J. C.; Álvarez-Nodarse, R.; Marcellán, F., On the \(q\)-polynomials: a distributional study, J. Comput. Appl. Math., 135, 157-196 (2001) · Zbl 0991.33007
[24] Nikiforov, A. F.; Suslov, S. K.; Uvarov, V. B., Classical Orthogonal Polynomials of a Discrete Variable. Springer Series in Computational Physics (1991), Springer: Springer Berlin · Zbl 0743.33001
[25] Nikiforov, A. F.; Uvarov, V. B., Special Functions of Mathematical Physics (1988), Birkhäuser: Birkhäuser Basel · Zbl 0694.33005
[26] Nikiforov, A. F.; Uvarov, V. B., Polynomial solutions of hypergeometric type difference equations and their classification, Integral Transform. Special Funct., 1, 223-249 (1993) · Zbl 1023.33002
[27] Suslov, S. K., The theory of difference analogues of special functions of hypergeometric type, Uspekhi Mat. Nauk., 44, 2, 185-226 (1989), (English translation Russian Math. Surveys 44(2) (1989) 227-278) · Zbl 0681.33019
[28] Tricomi, F., Vorlesungen über Orthogonalreihen, Grundlehren der Mathematischen Wissenschaften 76 (1955), Springer: Springer Berlín, Gottinga, Heidelberg · Zbl 0065.29601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.