## The set of Hausdorff continuous functions – the largest linear space of interval functions.(English)Zbl 1110.65036

Let $$\mathbb{R}$$ denote the set of real compact intervals $$[a]= [\underline a, \overline a]$$ with $$|[a]|=\max\{|\underline a|,|\overline a|\}$$, and let $$\Omega$$ be an open subset of $$\mathbb{R}^n$$. A function $$f: \Omega\to\mathbb{I}\mathbb{R}$$, is called $$f$$-locally bounded if for every $$x\in \Omega$$ there exist $$\delta>0$$ and $$M\in\mathbb{R}$$ such that $$|f(y)|<M$$ for all $$y\in B_\delta(x):=\{y\in\Omega|\|x-y\| <\delta\}$$, $$\|\cdot\|$$ being some norm in $$\mathbb{R}^n$$. Denote by $$\mathbb{A}(\Omega)$$ the set of all such $$f$$-locally bounded functions and define for a dense subset $$D$$ of $$\Omega$$ the mapping $$F:\mathbb{A}(D)\to\mathbb{A}(\Omega)$$ by
$F(D, \Omega,f)(x): =\left[\sup_{\delta>0}\inf\{f(y)\mid y\in B_\delta(x)\cap D\},\;\inf_{\delta>0} \sup\bigl\{f(y)\mid y\in B_\delta(x)\cap D\bigr\} \right].$
Let $$f\in\mathbb{A} (\Omega)$$. If $$f$$ satisfies $$F(\Omega,\Omega, f)=f$$ it is called $$S$$-continuous. If for every dense subset $$D$$ of $$\Omega$$ the property $$F(D,\Omega,f)=f$$ is fulfilled then $$f$$ is called $$D$$-continuous. If $$F(\Omega,\Omega,g)(x)=f(x)$$ holds for every function $$g\in\mathbb{A}(\Omega)$$ with $$g(x)\subset f(x)$$, $$x\in \Omega$$, then $$f$$ is called Hausdorff-continuous. The authors present properties of $$S$$-, $$D$$- and $$H$$-continuous functions, among them relations to semi-continuity of real functions, to continuity and to the interval hull of continuous functions. Moreover, they introduce operations $$\oplus,*$$ in the set $$\mathbb{H}(\Omega)$$ of $$H$$-continuous functions such that $$\mathbb{H} (\Omega)$$ becomes a linear space over the field $$\mathbb{R}$$. It is proved that in some sense this space is the largest linear space within the set $$\mathbb{G}(\Omega)$$ of $$D$$-continuous functions defined on $$\Omega$$. Extending the operations from $$\mathbb{H}(\Omega)$$ to $$\mathbb{G}(\Omega)$$ in an appropriate way shows that $$\mathbb{G} (\Omega)$$ is a quasi-linear space as defined by [S. Markov, J. Comput. Appl. Math. 162, No. 1, 93–112 (2004; Zbl 1046.15002)].

### MSC:

 65G40 General methods in interval analysis

Zbl 1046.15002
Full Text:

### References:

 [1] Anguelov, R.: An Introduction to Some Spaces of Interval Functions, Technical Report UPWT2004/3, University of Pretoria, 2004. · Zbl 1062.54017 [2] Anguelov, R.: Dedekind Order Completion of C(X) by Hausdorff Continuous Functions, Quaestiones Mathematicae 27 (2004), pp. 153–170. · Zbl 1062.54017 [3] Anguelov, R. and Markov, S.: Extended Segment Analysis, Freiburger Intervall-Berichte, Inst. Angew. Math, U. Freiburg i. Br. 10 (1981), pp. 1–63. [4] Anguelov, R. and Minani, F.: Hausdorff Continuous Viscosity Solutions of Hamilton- Jacobi Equations, Journal of Mathematical Analysis and Applications, to appear. · Zbl 1280.70011 [5] Anguelov, R. and Rosinger, E. E.: Hausdorff Continuous Solutions of Nonlinear PDEs through the Order Completion Method, Quaestiones Mathematicae 28 (2005), pp. 271–285. · Zbl 1330.35080 [6] Anguelov, R. and van der Walt, J. H.: Order Convergence Structure on C(X), Quaestiones Mathematicae 28 (2005), pp. 425–457. · Zbl 1094.46004 [7] Artstein, Z.: A Calculus for Set- Valued Maps and Set- Valued Evolution Equations, Set-Valued Analysis 3 (1995), pp. 213–261. · Zbl 0856.49016 [8] Artstein, Z.: Extensions of Lipschitz Selections and an Application to Differential Inclusions, Nonlinear Analysis: Theory, Methods and Applications 16 (1991), pp. 701–704. · Zbl 0723.34007 [9] Artstein, Z.: Piecewise Linear Approximations of Set- Valued Maps, Journal of Approximation Theory 56 (1989), pp. 41–47. · Zbl 0675.41041 [10] Aubin, J. P. and Ekeland, I.: Applied Nonlinear Analysis, Wiley, 1984. [11] Baire, R.: Lecons sur les Fonctions Discontinues, Collection Borel, Paris, 1905. · JFM 36.0438.01 [12] Bardi, M. and Capuzzo-Dolcetta, I. : Optimal Control and Viscosity Solutions of Hamilton- Jacobi- Bellman Equations, Birkauser, Boston - Basel - Berlin, 1997. · Zbl 0890.49011 [13] Birkhoff, G.: The Role of Order in Computing, in: Moore, R. (ed.), Reliability in Computing, Academic Press, 1988, pp. 357–378. · Zbl 0659.65059 [14] Cellina, A.: On the Differential Inclusion’ e (-1, 1), Rend. Ace. Naz. Lincei69 (1980), pp. 1–6. · Zbl 0922.34009 [15] Clarke, F. H.: Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983. · Zbl 0582.49001 [16] Crandal, M. G., Ishii, H., and Lions, P.-L.: User’s Guide to Viscosity Solutions of Second Order Partial Differential Equations, Bulletin of the American Mathematical Society 27 (1992), pp. 1–67. · Zbl 0755.35015 [17] Dilworth, R. P.: The Normal Completion of the Lattice of Continuous Functions, Trans. Amer. Math. Soc. 68 (1950), pp. 427–438. · Zbl 0037.20205 [18] Dyn, N. and Farkhi, E.: Spline Subdivision Schemes for Convex Compact Sets, Journal of Computational and Applied Mathematics 119 (2000), pp. 133–144. · Zbl 0970.65016 [19] Filippov, A. F.: Differential Equations with Discontinuous Right-Hand Side, Nauka, Moskow, 1988. (in Russian). · Zbl 0664.34001 [20] Ishii, H.: Perron’s Method for Hamilton-Jacob Equations, Duke Mathematical Journal 55 (1987), pp. 369–384. · Zbl 0697.35030 [21] Korovkin, P. P.: An Attempt for Axiomatic Treatment of Some Problems of Approximation Theory, in: Sendov, Bl. (ed.), Constructive Function Theory, BAS, Sofia, 1972, pp. 55–63. [22] Lempio, F. and Veliov, V.: Discrete Approximation of Differential Inclusions, Bayreuther Math- ematische Schriften 54 (1998), pp. 149–232. · Zbl 0922.65059 [23] Markov, S.: Extended Interval Arithmetic Involving Infinite Intervals, Mathematica Balkanica 6 (1992), pp. 269–304. · Zbl 0830.65034 [24] Markov, S.: On Quasilinear Spaces of Convex Bodies and Intervals, J. Comput. Appl. Math. 162 (2004), pp. 93–112. · Zbl 1046.15002 [25] Rockafellar, R. T.: Convex Analysis, Princeton University Press, 1970. · Zbl 0193.18401 [26] Sendov, BL: Approximation of Functions by Algebraic Polynomials with Respect to a Metric of Hausdorff Type, Ann. Sofia University, Mathematics 55 (1962), pp. 1–39. [27] Sendov, BL: Hausdorff Approximations, Kluwer Academic Publishers, 1990. · Zbl 0715.41001 [28] Sendov, BL, Anguelov, R., and Markov, S.: On the Linear Space of Hausdorff Continuous Functions, lecture delivered at the llth GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics, 4–8 October 2004, Fukuoka, Japan. · Zbl 1142.46316
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.