Cao, Huaixin; Zhang, Jianhua; Xu, Zongben Characterizations and extensions of Lipschitz-\(\alpha\) operators. (English) Zbl 1111.47045 Acta Math. Sin., Engl. Ser. 22, No. 3, 671-678 (2006). The authors define and study the spaces \(L^{\alpha}(K,X)\) and \(l^{\alpha} (K,X)\) on a compact metric space \((K,d)\), called the big and little Lipschitz-\(\alpha \) space, respectively. They prove that a map \(F\) from a compact metric space \(K\) into a Banach space \(X\) over the scalar field \(F\) is a Lipschitz-\(\alpha \) operator if and only if for each \(\sigma \in X^{*}\), the map \(\sigma \circ F\) is a Lipschitz-\(\alpha \) function on \(K\). The results obtained are of great academic interest. Reviewer: Edward Prempeh (Kumasi) Cited in 2 ReviewsCited in 7 Documents MSC: 47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc. 47H10 Fixed-point theorems Keywords:uniform boundedness principle; extension theorems; Lipschitz-\(\alpha \) operator PDF BibTeX XML Cite \textit{H. Cao} et al., Acta Math. Sin., Engl. Ser. 22, No. 3, 671--678 (2006; Zbl 1111.47045) Full Text: DOI References: [1] De Leeuw, K.: Banach spaces of Lipschitz functions. Studia Math., 21, 55–56 (1996) · Zbl 0101.08901 [2] Jenkins, T. M.: Banach spaces of Lipschitz functions of an abstract metric space, Ph. D. thesis, Yale University, 1968 [3] Johnson, J. A.: Banach spaces of Lipschitz functions and vector–valued Lipschitz functions. Trans. Amer. Math. Soc., 148, 147–169 (1970) · Zbl 0194.43603 [4] Johnson, J. A. Lipschitz spaces. Pacific J. Math., 51, 177–186 (1975) · Zbl 0247.46045 [5] Johnson, J. A.: A note on Banach spaces of Lipschitz functions. Pacific J. Math., 58, 475–482 (1975) · Zbl 0272.46020 [6] Mayer, E. W.: Isometries between Banach spaces of Lipschitz functions. Israel J. Math., 38, 58–74 (1981) · Zbl 0459.46017 [7] Wang, L. S., Xu, Z. B.: Qualitative studies on nonlinear Lipschitz operators (I) Lipschitz constant. Acta Mathematicae Applicatae Sinica, 19, 175–184 (1996) (in Chinese) · Zbl 0858.47037 [8] Xu, Z. B., Wang, L. S.: Qualitative studies on nonlinear Lipschitz operators (II) Dahlquist constant. J. Xi’an Jiaotong University, 30, 117–124 (1996) (in Chinese) · Zbl 1012.47021 [9] Wang, L. S., Xu, Z. B., Chen, B. L.: Qualitative studies on nonlinear Lipschitz operators (III) glb–Lipschitz constant. Acta Mathematica Sinica, Chinese Series, 42(3), 395–402 (1999) · Zbl 1012.47022 [10] Wang, L. S., Xu, Z. B.: Qualitative studies on nonlinear Lipschitz operators (IV)–Spectral theory. Acta Mathematica Sinica, Chinese Series, 38(5), 628–631 (1995) · Zbl 0837.47047 [11] Wang, L. S., Xu, Z. B.: Qualitative studies on nonlinear Lipschitz operators on the space \(\mathbb{C}\) m . Acta Mathematica Sinica, Chinese Series, 42(6), 1111–1118 (1999) · Zbl 1012.47024 [12] Cao, H. X., Xu, Z. B.: Some properties of Lipschitz–{\(\alpha\)} operators. Acta Mathematica Sinica, Chinese Series, 45(2), 279–286 (2002) · Zbl 1046.47047 [13] Cao, H. X., Xu, Z. B.: Lipschitz operators and solvability of nonlinear operator equations. Acta Mathematica Sinica, English Series, 20(3), 499–506 (2004) · Zbl 1082.47056 [14] Sherbert, D. R.: Banach algebras of Lipschitz functions. Pacific J. Math., 13, 1387–1399 (1963) · Zbl 0121.10203 [15] Sherbert, D. R.: The structure of ideals and point derivations in Banach algebras of Lipschitz functions. Trans. Amer. Math. Soc., 111, 240–272 (1964) · Zbl 0121.10204 [16] Weaver, N.: Lattices of Lipschitz functions. Pacific J. Math., 164, 179–193 (1994) · Zbl 0797.46007 [17] Weaver, N.: Order–completeness in Lipschitz algebras. J. Funct. Anal., 130, 118–130 (1995) · Zbl 0922.46022 [18] Weaver, N.: Lipschitz algebras and derivations of Von Neumann algebras. J. Funct. Anal., 139, 261– 300(1996) · Zbl 0864.46037 [19] Weaver, N.: Subalgebras of little Lipschitz algebras. Pacific J. Math., 173, 283–293 (1996) · Zbl 0846.54013 [20] Weaver, N.: Lipschitz algebras on the noncommutative torus. J. Operator Theory, 39, 123–138 (1998) · Zbl 0997.46046 [21] Weaver, N.: Lipschitz Algebras. World Scientific Publishing Co., Inc., River Edge, NJ, 1999 · Zbl 0936.46002 [22] Weaver, N.: Lipschitz algebras and derivations II. J. Funct. Anal., 178, 64–112 (2000) · Zbl 0979.46035 [23] Weaver, N.: Erratum: ”Lipschitz algebras and derivations II”. J. Funct. Anal., 186, 546 (2001) [24] Abdollahi, A.: The maximal ideal space of analytic Lipschitz algebras. Rend. Circ. Mat. Palermo (2), 47, 347–352 (1998) · Zbl 0917.46050 [25] Lamb, D.: Beurling and Lipschitz algebras. Bull. London Math. Soc., 31, 719–721 (1999) · Zbl 1029.43009 [26] Honary, T. G., Mahyar, H.: Approximation in Lipschitz algebras of infinitely differentiable functions. Bull. Korean Math. Soc., 36, 629–636 (1999) · Zbl 0951.46025 [27] Alimohammadi, D., Ebadian, A.: Hedberg’s theorem in real Lipschitz algebras. Indian J. Pure Appl. Math., 32, 1479–1493 (2001) · Zbl 1013.46042 [28] Honary, T. G., Mahyar, H.: Approximation in Lipschitz algebras. Quaest. Math., 23, 13–19 (2000) · Zbl 0963.46034 [29] Ebadian, A.: Prime ideals in Lipschitz algebras of finite differentiable functions. Honam Math. J., 22, 21–30 (2000) · Zbl 0967.46041 [30] Pavlović, B.: Automatic continuity of Lipschitz algebras. J. Funct. Anal., 131, 115–144 (1995) · Zbl 0890.46041 [31] Pavlović, B.: Discontinuous maps from Lipschitz algebras. J. Funct. Anal., 155, 436–454(1998) · Zbl 0913.46045 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.