Ferrando, Joan Josep; Sáez, Juan Antonio Type I vacuum solutions with aligned Papapetrou fields: an intrinsic characterization. (English) Zbl 1112.83019 J. Math. Phys. 47, No. 11, 112501, 12 p. (2006). Summary: We show that Petrov type I vacuum solutions admitting a Killing vector whose Papapetrou field is aligned with a principal bivector of the Weyl tensor are the Kasner and Taub metrics, their counterpart with timelike orbits and their associated windmill-like solutions, as well as the Petrov homogeneous vacuum solution. We recover all these metrics by using an integration method based on an invariant classification which allows us to characterize every solution. In this way we obtain an intrinsic and explicit algorithm to identify them. Cited in 5 Documents MSC: 83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Papapetrou A., Ann. Inst. Henri Poincare, Sect. A 4 pp 83– (1966) [2] DOI: 10.1088/0264-9381/16/9/314 · Zbl 1007.83017 · doi:10.1088/0264-9381/16/9/314 [3] DOI: 10.1088/0264-9381/17/16/317 · Zbl 0983.83004 · doi:10.1088/0264-9381/17/16/317 [4] DOI: 10.1063/1.1665702 · Zbl 0228.53026 · doi:10.1063/1.1665702 [5] DOI: 10.1063/1.1665545 · Zbl 0236.53034 · doi:10.1063/1.1665545 [6] DOI: 10.1007/BF00763435 · doi:10.1007/BF00763435 [7] DOI: 10.1007/BF00763436 · doi:10.1007/BF00763436 [8] DOI: 10.1088/0264-9381/18/3/301 · Zbl 0979.83011 · doi:10.1088/0264-9381/18/3/301 [9] DOI: 10.1088/0264-9381/19/2/306 · Zbl 0997.83043 · doi:10.1088/0264-9381/19/2/306 [10] DOI: 10.1088/0264-9381/19/14/318 · Zbl 1006.83009 · doi:10.1088/0264-9381/19/14/318 [11] DOI: 10.1088/0264-9381/19/21/314 · Zbl 1021.83012 · doi:10.1088/0264-9381/19/21/314 [12] DOI: 10.1088/0264-9381/20/24/004 · Zbl 1045.83024 · doi:10.1088/0264-9381/20/24/004 [13] A. Z. Petrov, Recent Developments in General Relativity (Pergamon, Oxford, 1962), p. 379. [14] DOI: 10.1088/0264-9381/15/5/014 · Zbl 0937.83006 · doi:10.1088/0264-9381/15/5/014 [15] DOI: 10.1063/1.1640795 · Zbl 1070.83003 · doi:10.1063/1.1640795 [16] DOI: 10.1063/1.529802 · doi:10.1063/1.529802 [17] DOI: 10.1088/0264-9381/14/1/014 · Zbl 0868.53061 · doi:10.1088/0264-9381/14/1/014 [18] DOI: 10.1088/0264-9381/18/22/315 · Zbl 1051.83006 · doi:10.1088/0264-9381/18/22/315 [19] DOI: 10.1023/A:1001910908054 · Zbl 0972.83007 · doi:10.1023/A:1001910908054 [20] DOI: 10.1023/A:1001910908054 · Zbl 0972.83007 · doi:10.1023/A:1001910908054 [21] Géhéniau J., Compt. Rend. 244 pp 723– (1957) [22] Bel L., Les Théories Relativistes de la Gravitation (1959) [23] DOI: 10.1023/A:1001958805232 · Zbl 0971.83002 · doi:10.1023/A:1001958805232 [24] DOI: 10.1023/A:1001958805232 · Zbl 0971.83002 · doi:10.1023/A:1001958805232 [25] DOI: 10.1017/CBO9780511535185 · doi:10.1017/CBO9780511535185 [26] DOI: 10.1007/BF00670767 · Zbl 0608.53020 · doi:10.1007/BF00670767 [27] DOI: 10.1063/1.1704788 · Zbl 0142.24009 · doi:10.1063/1.1704788 [28] DOI: 10.1063/1.522621 · Zbl 0304.53022 · doi:10.1063/1.522621 [29] DOI: 10.2307/2370192 · JFM 48.1040.02 · doi:10.2307/2370192 [30] DOI: 10.1007/BF00760081 · Zbl 0811.53076 · doi:10.1007/BF00760081 [31] DOI: 10.2307/1969567 · Zbl 0044.22804 · doi:10.2307/1969567 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.