Pykacz, Jarosław; D’Hooghe, Bart Bell-type inequalities in fuzzy probability calculus. (English) Zbl 1113.03344 Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 9, No. 2, 263-275 (2001). Summary: Bell-type inequalities, used in mathematical physics as a criterion to check whether a physical situation allows description in terms of classical (Kolmogorovian) or quantum probability calculus are applied to various fuzzy probability models. It occurs that the standard set of Bell-type inequalities does not allow Kolmogorovian probabilities to be distinguished from fuzzy probabilities based on the most frequently used Zadeh intersection or probabilistic intersection, but it allows all these models to be distinguished from fuzzy probability models based on Giles (Łukasiewicz) intersection. It is proved that if we use fuzzy set intersections pointwisely generated by Frank’s fundamental triangular norms \(T_{s}(x,y)\), then the borderline between fuzzy probability models that can be distinguished from Kolmogorovian ones and those fuzzy probability models that cannot be distinguished is for \( s=9 +4\sqrt 5\). Cited in 8 Documents MSC: 03E72 Theory of fuzzy sets, etc. 81P15 Quantum measurement theory, state operations, state preparations Keywords:fuzzy probability models; Bell inequalities PDF BibTeX XML Cite \textit{J. Pykacz} and \textit{B. D'Hooghe}, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 9, No. 2, 263--275 (2001; Zbl 1113.03344) Full Text: DOI References: [1] Bell J.S., Physics 1 pp 195– (1965) [2] DOI: 10.1063/1.529326 · Zbl 0731.60003 [3] DOI: 10.1063/1.529638 · Zbl 0771.03022 [4] Pykacz J., Singapore pp 706– (1988) [5] DOI: 10.1063/1.529327 · Zbl 0729.03037 [6] DOI: 10.1016/0375-9601(86)90276-8 [7] DOI: 10.1016/S0019-9958(65)90241-X · Zbl 0139.24606 [8] DOI: 10.1016/S0020-7373(76)80003-X · Zbl 0335.02037 [9] DOI: 10.1016/S0020-7373(76)80001-6 · Zbl 0332.68068 [10] DOI: 10.1073/pnas.28.12.535 · Zbl 0063.03886 [11] Schweizer B., C. R. Acad. Sci. Paris 247 pp 2092– (1958) [12] DOI: 10.1007/BF02189866 · Zbl 0444.39003 [13] DOI: 10.1016/0022-247X(91)90181-X · Zbl 0751.60003 [14] Dubois D., California) pp 1059– (1993) [15] DOI: 10.1007/BF00670685 · Zbl 0819.03048 [16] DOI: 10.1016/0022-247X(68)90078-4 · Zbl 0174.49002 [17] Mesiar R., Tatra Mountains Mathematical Publications 1 pp 105– (1992) [18] DOI: 10.1006/jmaa.1996.0243 · Zbl 0852.28009 [19] Schweizer B., Dordrecht pp 13– (1991) [20] Aerts D., Mannheim pp 235– (1983) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.