×

KKM type theorems and coincidence theorems with applications to the existence of equilibria. (English) Zbl 1114.49011

Summary: We obtain some coincidence theorems and some KKM-type theorems. We apply these results to establish the existence of the solution to generalized vector equilibrium problems, where a bimap \(f : X\times Y \to 2^\mathbb Z\) is involved and some sufficient conditions are imposed on \(f\).

MSC:

49J40 Variational inequalities
49J35 Existence of solutions for minimax problems
47H10 Fixed-point theorems
47N10 Applications of operator theory in optimization, convex analysis, mathematical programming, economics
91B50 General equilibrium theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Blum, E., and Oettli, W., From Optimization and Variational Inequalities to Equilibrium Problems, Mathematics Student, Vol. 63, pp. 123–146, 1994. · Zbl 0888.49007
[2] Giannessi, F., Editor, Variational Inequalities and Vector Equilibria:Mathematical Theories, Kluwer Academic Publishers, Dordrecht, Holland, 2000.
[3] Lin, L. J., and Yu, Z. T., Fixed-Point Theorems and Equilibrium Problems, Nonlinear Analysis:Theory, Methods, and Applications, Vol. 43, pp. 987–999, 2001. · Zbl 0989.47051 · doi:10.1016/S0362-546X(99)00202-3
[4] Ansari, Q. H., and Yao, J. C., An Existence Result for the Generalized Vector Equilibrium Problems, Applied Mathematics Letters, Vol. 12, pp. 53–56, 1999. · Zbl 1014.49008 · doi:10.1016/S0893-9659(99)00121-4
[5] Lin, L. J., Yu, Z. T., and Kassay, G., Existence of Equilibria for Monotone Multivalued Mappings and Its Applications to Vectorial Equilibria, Journal of Optimization Theory and Applications, Vol. 114, pp. 189–208, 2002. · Zbl 1023.49014 · doi:10.1023/A:1015420322818
[6] Lin, L. J., Ansari, Q. H., and Wu, J. Y., Geometric Properties and Coincidence Theorems with Applications to Generalized Vector Equilibrium Problems, Journal of Optimization Theory and Applications, Vol. 117, pp. 121–137, 2003. · Zbl 1063.90062 · doi:10.1023/A:1023656507786
[7] Bianchi, M., and Pini, R., A Result of Localization of Equilibria, Journal of Optimization Theory and Applications, Vol. 115, pp. 335–343, 2002. · Zbl 1049.91103 · doi:10.1023/A:1020888205598
[8] Chang, T. H., and Yen, C. L., KKM Properties and Fixed-Point Theorems, Journal of Mathematical Analysis and Applications, Vol. 203, pp. 224–235, 1996. · Zbl 0883.47067 · doi:10.1006/jmaa.1996.0376
[9] Djafari-Rouhani, B., Tarafdar, E., and Watson, P. J., Fixed-Point Theorems, Coincidence Theorems, and Variational Inequalities, Generalized Convexity and Generalized Monotonicity, Edited by N. Hadjisavvas, J. E. Martínez-Legaz, and J. P. Penot, Springer Verlag, Berlin, Germany, pp. 183–188, 2001. · Zbl 0994.47056
[10] Chang, S. S., Lee, B. S., Wu, X., Cho, Y. J., and Lee, G. M., On the Generalized Quasi-Variational Inequality Problems, Journal of Mathematical Analysis and Applications, Vol. 203, pp. 686–711, 1996. · Zbl 0867.49008 · doi:10.1006/jmaa.1996.0406
[11] Tian, G. Q., Generalizations of the KKM Theorem and the Ky Fan Minimax Inequality with Applications to Maximal Elements, Price Equilibrium, and Complementarity, Journal of Mathematical Analysis and Applications, Vol. 170, pp. 457–471, 1992. · Zbl 0767.49007 · doi:10.1016/0022-247X(92)90030-H
[12] Lassonde, M., On the Use of KKM Multifunctions in Fixed-Point Theory and Related Topics, Journal of Mathematical Analysis and Applications, Vol. 97, pp. 151–201, 1983. · Zbl 0527.47037 · doi:10.1016/0022-247X(83)90244-5
[13] Lin, L. J., Applications of a Fixed-Point Theorem in G-Convex Space, Nonlinear Analysis:Theory, Methods, and Applications, Vol. 46, pp. 601–608, 2001. · Zbl 1001.47041 · doi:10.1016/S0362-546X(99)00456-3
[14] Tan, N. X., Quasi-Variational Inequalities in Topological Linear Locally Convex Hausdorff Spaces, Mathematische Nachrichten, Vol. 122, pp. 231–245, 1985. · doi:10.1002/mana.19851220123
[15] Konnov, I. V., and Yao, J. C., Existence of Solutions for Generalized Vector Equilibrium Problems, Journal of Mathematical Analysis and Applications, Vol. 233, pp. 328–335, 1999. · Zbl 0933.49004 · doi:10.1006/jmaa.1999.6312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.