On duality between étale groupoids and Hopf algebroids. (English) Zbl 1115.22003

To any étale Lie groupoid \(G\) over a smooth manifold \(M\), we can associate a Hopf algebroid by taking the groupoid convolution algebra \({\mathcal C}_C^\infty(G)\) of smooth functions with compact support on \(G\) with its natural coalgebra structure. In this paper the author provides explicit conditions for identifying when a Hopf algebroid arises from a Lie groupoid in this way. In addition, the author gives a complementary construction for a Hopf algebroid \(A\) over \({\mathcal C}_C^\infty(M)\): the ‘associated spectral étale Lie groupoid’ \({\mathcal G}_{sp}(A)\) has the property that setting \(A = {\mathcal C}_C^\infty(G)\) yields the original Lie groupoid \(G\) in a functorial way, and \({\mathcal G}_{sp}\) is a right adjoint to the functor \({\mathcal C}_C^\infty\).


22A22 Topological groupoids (including differentiable and Lie groupoids)
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
58H05 Pseudogroups and differentiable groupoids
81R60 Noncommutative geometry in quantum theory
Full Text: DOI


[1] Cannas da Silva, A.; Weinstein, A., (Geometric Models for Noncommutative Algebras. Geometric Models for Noncommutative Algebras, Berkeley Mathematics Lecture Notes, vol. 10 (1999), American Mathematical Society: American Mathematical Society Providence) · Zbl 1135.58300
[2] Connes, A., The von Neumann algebra of a foliation, (Mathematical Problems in Theoretical Physics. Mathematical Problems in Theoretical Physics, Lecture Notes in Phys., vol. 80 (1978), Springer: Springer New York), 145-151 · Zbl 0433.46056
[3] Connes, A., A survey of foliations and operator algebras. Operator algebras and applications, Proc. Sympos. Pure Math., 38, Part I, 521-628 (1982) · Zbl 0531.57023
[4] Connes, A., Noncommutative Geometry (1994), Academic Press: Academic Press San Diego · Zbl 1106.58004
[5] Crainic, M.; Moerdijk, I., A homology theory for étale groupoids, J. Reine Angew. Math., 521, 25-46 (2000) · Zbl 0954.22002
[6] van Est, W. T., Rapport sur les \(S\)-atlas, Astérisque, 116, 235-292 (1984) · Zbl 0543.58003
[7] Haefliger, A., Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv., 32, 248-329 (1958) · Zbl 0085.17303
[8] Haefliger, A., Groupoids and foliations. Groupoids in analysis, geometry, and physics, Contemp. Math., 282, 83-100 (2001) · Zbl 0994.57025
[9] Huebschmann, J., Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras, Ann. Inst. Fourier (Grenoble), 48, 425-440 (1998) · Zbl 0973.17027
[10] Lu, J.-H., Hopf algebroids and quantum groupoids, Internat. J. Math., 7, 47-70 (1996) · Zbl 0884.17010
[11] Maltsiniotis, G., Groupoïdes quantiques de base non commutative, Comm. Algebra, 28, 3441-3501 (2000) · Zbl 0956.18002
[12] Moerdijk, I., Classifying toposes and foliations, Ann. Inst. Fourier (Grenoble), 41, 189-209 (1991) · Zbl 0727.57029
[13] Moerdijk, I., Orbifolds as groupoids: An introduction, (Orbifolds in Mathematics and Physics. Orbifolds in Mathematics and Physics, Contemp. Math., vol. 310 (2002), Amer. Math. Soc.: Amer. Math. Soc. Providence), 205-222 · Zbl 1041.58009
[14] Moerdijk, I.; Mrčun, J., (Introduction to Foliations and Lie Groupoids. Introduction to Foliations and Lie Groupoids, Cambridge Studies in Advanced Mathematics, vol. 91 (2003), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 1029.58012
[15] Mrčun, J., Functoriality of the bimodule associated to a Hilsum-Skandalis map, \(K\)-Theory, 18, 235-253 (1999) · Zbl 0938.22002
[16] Mrčun, J., The Hopf algebroids of functions on étale groupoids and their principal Morita equivalence, J. Pure Appl. Algebra, 160, 249-262 (2001) · Zbl 0986.16017
[17] J. Mrčun, On spectral representation of coalgebras and Hopf algebroids, 2002 (preprint). ArXiv: math.QA/0208199; J. Mrčun, On spectral representation of coalgebras and Hopf algebroids, 2002 (preprint). ArXiv: math.QA/0208199
[18] Mrčun, J., On isomorphisms of algebras of smooth functions, Proc. Amer. Math. Soc., 133, 3109-3113 (2005) · Zbl 1077.58005
[19] J. Mrčun, Sheaf coalgebras and duality (preprint); J. Mrčun, Sheaf coalgebras and duality (preprint)
[20] Renault, J., (A Groupoid Approach to \(C^\ast \)-Algebras. A Groupoid Approach to \(C^\ast \)-Algebras, Lecture Notes in Math., vol. 793 (1980), Springer: Springer New York) · Zbl 0433.46049
[21] Takeuchi, M., Groups of algebras over \(A \otimes \overline{A} \), J. Math. Soc. Japan, 29, 459-492 (1977) · Zbl 0349.16012
[22] Xu, P., Quantum groupoids and deformation quantization, C. R. Acad. Sci. Paris, 326, 289-294 (1998) · Zbl 0911.17012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.