Salappa, A.; Doumpos, M.; Zopounidis, C. Feature selection algorithms in classification problems: an experimental evaluation. (English) Zbl 1116.62069 Optim. Methods Softw. 22, No. 1, 199-212 (2007). Summary: Feature selection (FS) is a significant topic for the development of efficient pattern recognition systems. FS refers to the selection of the most appropriate subset of features that describes (adequately) a given classification task. The objective of the present paper is to perform a thorough analysis of the performance and efficiency of feature selection algorithms (FSAs). The analysis covers a variety of important issues with respect to the functionality of FSAs, such as: (a) their ability to identify relevant features, (b) the performance of the classification models developed on a reduced set of features, (c) the reduction in the number of features and (d) the interactions between different FSAs with the techniques used to develop a classification model. The analysis considers a variety of FSAs and classification methods. Cited in 2 Documents MSC: 62H30 Classification and discrimination; cluster analysis (statistical aspects) 68T10 Pattern recognition, speech recognition 62-04 Software, source code, etc. for problems pertaining to statistics Keywords:feature selection; knowledge discovery; pattern recognition; machine learning Software:UCI-ml; C4.5 PDFBibTeX XMLCite \textit{A. Salappa} et al., Optim. Methods Softw. 22, No. 1, 199--212 (2007; Zbl 1116.62069) Full Text: DOI References: [1] Kira, K. and Rendell, L. The feature selection problem: traditional methods and a new algorithm. Proceedings of AAAI-92. Reston: AAAI Press. [2] DOI: 10.1016/S0004-3702(97)00063-5 · Zbl 0904.68142 · doi:10.1016/S0004-3702(97)00063-5 [3] Doak, J. 1992. ”An evaluation of feature selection methods and their application to computer security”. Technical report CSE-92-18, University of California, Department of Computer Science, Davis, CA [4] Liu H., Feature Selection for Knowledge Discovery and Data Mining (1998) · Zbl 0908.68127 [5] Molina, L. C., Belanche, L. and Nebot, A. Feature selection algorithms: A survey and experimental evaluation. Proceedings of the 2002 IEEE International Conference on Data Mining. New York: IEEE Computer Society. · Zbl 1028.68600 [6] DOI: 10.1109/TC.1977.1674939 · Zbl 0363.68059 · doi:10.1109/TC.1977.1674939 [7] Devijver P. A., Pattern Recognition: A Statistical Approach (1982) · Zbl 0542.68071 [8] Ben-Bassat M., Handbook of Statistics (1982) · Zbl 0506.62044 [9] DOI: 10.1016/0004-3702(94)90084-1 · Zbl 0942.68657 · doi:10.1016/0004-3702(94)90084-1 [10] Quinlan J. R., C4.5: Programs for Machine Learning (1993) [11] Koller, D. and Sahami, M. Toward optimal feature selection. Proceedings of the 13th International Conference on Machine Learning. Edited by: Saitta, L. San Francisco: Morgan Kaufmann. [12] Almuallim, H. and Dietterich, T. G. Learning with many irrelevant features. Proceedings of the 9th National Conference on Artificial Intelligenc, Vol. 2, Anaheim: AAAI Press. · Zbl 0942.68657 [13] Liu, H. and Setiono, R. A probabilistic approach to feature selection: a filter solution. Proceedings of the 13th International Conference on Machine Learning, Edited by: Saitta, L. San Francisco: Morgan Kaufmann. [14] Liu, H. and Setiono, R. Scalable feature selection for large sized databases. Proceedings of the 4th World Congress on Expert Systems, San Francisco: Morgan Kaufmann. [15] Choubey, S. K., Deogun, J. S., Raghavan, V. V. and Sever, H. A comparison of feature selection algorithms in the context of rough classifiers. Proceedings of the 5th IEEE international Conference on Fuzzy System. New Orleans, LA. Vol. 2, [16] DOI: 10.1016/0167-8655(94)90127-9 · doi:10.1016/0167-8655(94)90127-9 [17] Dash, M. and Liu, H. Hybrid search of feature subsets. Proceedings of the 15th Pacific Rim International Conference on Artificial Intelligence. Edited by: Lee, H. Y. and Motoda, H. Singapore: Springer Verlag. [18] DOI: 10.1016/S0004-3702(97)00043-X · Zbl 0904.68143 · doi:10.1016/S0004-3702(97)00043-X [19] Stone M., Journal of the Royal Statistical Society B 36 pp 111– (1974) [20] DOI: 10.2307/2288636 · Zbl 0543.62079 · doi:10.2307/2288636 [21] Breiman L., Classification and Regression Trees (1984) · Zbl 0541.62042 [22] DOI: 10.1007/BF01001956 · Zbl 0501.68053 · doi:10.1007/BF01001956 [23] Quinlan J. R., Machine Learning 1 pp 81– (1986) [24] Moody J., Advances in Neural Information Processing Systems (1992) [25] Vapnik V. N., Statistical Learning Theory (1998) · Zbl 0935.62007 [26] Fukunaga K., Introduction to Statistical Pattern Recognition,, 2. ed. (1990) · Zbl 0711.62052 [27] Klecka W. R., Discriminant Analysis (1980) · doi:10.4135/9781412983938 [28] DOI: 10.1002/0471722146 · doi:10.1002/0471722146 [29] Duda R. O., Pattern Classification,, 2. ed. (2001) · Zbl 0968.68140 [30] DOI: 10.1016/0893-6080(90)90049-Q · doi:10.1016/0893-6080(90)90049-Q [31] Blake C., UCI repository of machine learning data bases (1998) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.