×

Approximate representation of the de Sitter group. (English) Zbl 1117.83127

Summary: The purpose of this paper is to develop a theory of approximate representations of the de Sitter group considered as a perturbation of the Poincaré group. This approach simplifies investigation of relativistic effects pertaining to the mechanics in the de Sitter universe. Utility of the approximate approach is manifest if one compares the transformations of the de Sitter group with their approximate representations.

MSC:

83F05 Relativistic cosmology
53Z05 Applications of differential geometry to physics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] V.A. Baikov, R.K. Gazizov, N.H. Ibragimov, Approximate symmetries of equations with a small parameter, preprint No. 150, Institute of Applied Mathematics, Acad. Sci. USSR, Moscow (1987), pp. 1-28 (in Russian) · Zbl 0826.35004
[2] Baikov, V.A.; Gazizov, R.K.; Ibragimov, N.H., Approximate symmetries, Math. sb., Math. USSR sb., 64, 2, 435-450, (1989), English transl.: · Zbl 0683.35004
[3] Bateman, H., The conformal transformations of a space of four dimensions and their applications to geometrical optics, Proc. London math. soc. ser., 2, 7, 70-89, (1909) · JFM 40.0710.02
[4] Bateman, H., The transformation of the electrodynamical equations, Proc. London math. soc. ser., 2, 8, 223-264, (1910) · JFM 41.0942.03
[5] de Sitter, W., On Einstein’s theory of gravitation and its consequences, Monthly notices roy. astron. soc., 78, 3, (1917)
[6] Dirac, P.A.M., The electron wave equation in de Sitter space, Ann. of math., 36, 3, 657-669, (1935) · Zbl 0012.13503
[7] Eisenhart, L.P., Riemannian geometry, (1949), Princeton Univ. Press Princeton, NJ · Zbl 0041.29403
[8] Gürsey, F., Introduction to the de Sitter group, (), 365-389
[9] N.H. Ibragimov, Dynamics in the de Sitter universe, preprint No. 144, Institute of Applied Mathematics, Acad. Sci. USSR, Moscow (1990), pp. 1-22 (in Russian)
[10] Inönü, E.; Wigner, E.P., On the contraction of groups and their representations, Proc. natl. acad. sci. USA, 39, 4, 510, (1953) · Zbl 0050.02601
[11] Kagan, V.F., Foundations of geometry, part 2, (1956), GITTL Moscow, (in Russian) · Zbl 0072.38706
[12] Klein, F., Über die geometrischen grundlagen der lorentzgruppe, Jahresbericht d. deutschen mathematiker vereinigung, 19, 9-10, 281-300, (1910) · JFM 41.0535.01
[13] Klein, F., Über die integralform der erhaltungssätze und die theorie der räumlich-geschlossenen welt, Königliche gesellschaft der wissenschaften zu Göttingen, nachrichten. mathematisch-physikalische klasse (3), 394-423, (1918) · JFM 46.1308.01
[14] Lie, S., Geometrie der berührungstransformationen (dargestellt von sophus Lie und georg scheffers), (1896), B.G. Teubner Leipzig · JFM 27.0547.01
[15] Liouville, J., Note on sujet de l’article précédent, J. math. pures appl., 12, 265, (1847)
[16] Riemann, G.F.B., Über die hypothesen, welche der geometrie zu grunde liegen, Abhandlungen der Königlichen gesellschaft der wissssenschaftern zu Göttingen, 13, 1-21, (1868), (Habilitationsschrift, Göttingen, 10 Juni, 1854. Reprinted in Gesammelte Mathematische Werke, 1876, pp. 254-269. English translation by William Kingdon Clifford, On the Hypotheses which lie at the Bases of Geometry, Nature 8 (1873))
[17] Synge, G.L., Relativity: the general theory, (1964), North-Holland Amsterdam
[18] Weinberg, S., Gravitation and cosmology, (1972), New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.