A posteriori error estimators for obstacle problems – another look. (English) Zbl 1118.65068

Summary: We show that a posteriori estimators for the obstacle problem are easily obtained from the theory for linear equations. The theory would be even simpler if the Lagrange multiplier does not have a nonconforming contribution as it has in actual finite element computations.


65K10 Numerical optimization and variational techniques
49J40 Variational inequalities
Full Text: DOI


[1] Ainsworth, M., Oden, T.J.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester, 2000 · Zbl 1008.65076
[2] Bartels, Numer. Math., 99, 225 (2004) · Zbl 1063.65050
[3] Braess, D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, 2001 · Zbl 0976.65099
[4] Carstensen, Math. Comp., 71, 945 (2002) · Zbl 0997.65126
[5] Chen, Numer. Math., 84, 527 (2000) · Zbl 0943.65075
[6] Hoppe, SIAM J. Numer. Anal., 31, 301 (1994) · Zbl 0806.65064
[7] Kornhuber, Comput. Math. Appl., 31, 49 (1996) · Zbl 0857.65071
[8] Suttmeier, F.T.: Consistent error estimation of FE-approximations of variational inequalities. Preprint Universität Dortmund, 2004
[9] Veeser, SIAM J. Numer. Anal., 39, 146 (2001) · Zbl 0992.65073
[10] Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester - New York - Stuttgart, 1996 · Zbl 0853.65108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.