Sun, Jian-Ping; Li, Wan-Tong Existence of solutions to nonlinear first-order PBVPs on time scales. (English) Zbl 1120.34314 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67, No. 3, 883-888 (2007). Summary: We are concerned with the following nonlinear first-order periodic boundary value problem on time scales \[ \begin{cases} x^\Delta(t)+p(t)x (\sigma(t))=g(t,x(\sigma (t))),\;t\in[0,T]_\mathbb{T},\\ x(0)=x(\sigma(T)). \end{cases} \] Some new existence criteria of at least one solution are established by using new inequalities and the well-known Schaefer fixed-point theorem. Cited in 14 Documents MSC: 34B15 Nonlinear boundary value problems for ordinary differential equations 39A10 Additive difference equations Keywords:time scale; periodic boundary value problems; solution; fixed point PDF BibTeX XML Cite \textit{J.-P. Sun} and \textit{W.-T. Li}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67, No. 3, 883--888 (2007; Zbl 1120.34314) Full Text: DOI References: [1] Agarwal, R. P.; Bohner, M., Basic calculus on time scales and some of its applications, Results Math., 35, 3-22 (1999) · Zbl 0927.39003 [2] Atici, F. M.; Cabada, A., Existence and uniqueness results for discrete second-order periodic boundary value problems, Comput. Math. Appl., 45, 1417-1427 (2003) · Zbl 1057.39008 [3] Bohner, M.; Peterson, A., Dynamic Equations on Time Scales (2001), Springer-Verlag: Springer-Verlag New York · Zbl 1021.34005 [4] Cabada, A., The method of lower and upper solutions for nth-order periodic boundary value problems, J. Appl. Math. Stoch. Anal., 7, 33-47 (1994) · Zbl 0801.34026 [5] Cabada, A.; Lois, S., Maximum principles for fourth and sixth order periodic boundary value problems, Nonlinear Anal., 29, 1161-1171 (1997) · Zbl 0886.34018 [6] Cabada, A.; Nieto, J. J., Extremal solutions of second order nonlinear periodic boundary value problems, Appl. Math. Comput., 40, 135-145 (1990) · Zbl 0723.65056 [7] Cabada, A.; Otero-Espinar, V., Optimal existence results for \(n\)-th order periodic boundary value difference problems, J. Math. Anal. Appl., 247, 67-86 (2000) · Zbl 0962.39006 [8] Cabada, A.; Otero-Espinar, V., Comparison results for \(n\)-th order periodic difference equations, Nonlinear Anal., 47, 2395-2406 (2001) · Zbl 1042.39505 [9] Cabada, A., Extremal solutions and Green’s functions of higher order periodic boundary value problems in time scales, J. Math. Anal. Appl., 290, 35-54 (2004) · Zbl 1056.39018 [11] Gulsan Topal, S., Second-order periodic boundary value problems on time scales, Comput. Math. Appl., 48, 637-648 (2004) · Zbl 1068.34016 [12] Guo, D.; Lakshmikantham, V., Nonlinear Problems in Abstract Cones (1988), Academic Press: Academic Press New York · Zbl 0661.47045 [13] Henderson, J.; Tisdell, C. C., Topological transversality and boundary value problems on time scales, J. Math. Anal. Appl., 289, 110-125 (2004) · Zbl 1047.34014 [14] Hilger, S., Analysis on measure chains—A unified approach to continuous and discrete calculus, Results Math., 18, 18-56 (1990) · Zbl 0722.39001 [15] Kaymakcalan, B.; Lakshmikanthan, V.; Sivasundaram, S., Dynamic Systems on Measure Chains (1996), Kluwer: Kluwer Boston · Zbl 0869.34039 [16] Lakshmikantham, V., Periodic boundary value problems of first and second order differential equations, J. Appl. Math. Simul., 2, 131-138 (1989) · Zbl 0712.34058 [17] Lakshmikantham, V.; Leela, S., Remarks on first and second order periodic boundary value problems, Nonlinear Anal., 8, 281-287 (1984) · Zbl 0532.34029 [18] Leela, S.; Oguztoreli, M. N., Periodic boundary value problem for differential equations with delay and monotone iterative method, J. Math. Anal. Appl., 122, 301-307 (1987) · Zbl 0616.34062 [19] Li, Y. X., Positive solutions of fourth-order periodic boundary value problems, Nonlinear Anal., 54, 1069-1078 (2003) · Zbl 1030.34025 [20] Li, Y. X., Positive solutions of higher-order periodic boundary value problems, Comput. Math. Appl., 48, 153-161 (2004) · Zbl 1062.34021 [21] Lloyd, N. G., Degree Theory (1978), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0367.47001 [22] Peng, S., Positive solutions for first order periodic boundary value problem, Appl. Math. Comput., 158, 345-351 (2004) · Zbl 1082.34510 [23] Rachunkova, I.; Tvrdy, M.; Vrkoc, I., Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems, J. Differential Equations, 176, 445-469 (2001) · Zbl 1004.34008 [25] Sun, J. P.; Li, W. T., Positive solution for system of nonlinear first-order PBVPs on time scales, Nonlinear Anal., 62, 131-139 (2005) · Zbl 1071.34017 [26] Thompson, H. B.; Tisdell, C. C., Systems of difference equations associated with boundary value problems for second order systems of ordinary differential equations, J. Math. Anal. Appl., 248, 333-347 (2000) · Zbl 0963.65081 [27] Thompson, H. B.; Tisdell, C. C., Boundary value problems for systems of difference equations associated with systems of second-order ordinary differential equations, Appl. Math. Lett., 15, 761-766 (2002) · Zbl 1003.39012 [30] Tisdell, C. C.; Thompson, H. B., On the existence of solutions to boundary value problems on time scales, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 12, 595-606 (2005) · Zbl 1122.34012 [31] Wan, Z.; Chen, Y., Remarks on the periodic boundary value problems for first-order differential equations, Comput. Math. Appl., 37, 49-55 (1999) · Zbl 0936.34013 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.