Yang, Xiande; Zhou, Yiqiang Some families of strongly clean rings. (English) Zbl 1122.16027 Linear Algebra Appl. 425, No. 1, 119-129 (2007). A ring \(R\) with identity is called strongly clean if every element of \(R\) is the sum of an idempotent and a unit that commute with each other. For a commutative local ring and for an arbitrary integer \(n\geq 2\), this paper deals with the question whether the strongly clean property of \(\mathbb{M}_n(R[\![x]\!])\), \(\mathbb{M}_n(R[x]/(x^k))\), and \(\mathbb{M}_n(RC_2)\) follows from the strongly clean property of \(\mathbb{M}_n(R)\). This is “yes” if \(n=2\) by a known result. Reviewer: Tong Wenting (Nanjing) Cited in 8 Documents MSC: 16U60 Units, groups of units (associative rings and algebras) 16S50 Endomorphism rings; matrix rings 16S36 Ordinary and skew polynomial rings and semigroup rings Keywords:strongly clean rings; matrix rings; commutative local rings; idempotents; units PDF BibTeX XML Cite \textit{X. Yang} and \textit{Y. Zhou}, Linear Algebra Appl. 425, No. 1, 119--129 (2007; Zbl 1122.16027) Full Text: DOI OpenURL References: [1] Azumaya, G., On maximally central algebras, Nagoya math. J., 2, 119-150, (1950) · Zbl 0045.01103 [2] Burgess, W.D.; Menal, P., On strongly π-regular rings and homomorphisms into them, Comm. algebra, 16, 1701-1725, (1988) · Zbl 0655.16006 [3] G. Borooah, A. Diesl, T. Dorsey, Strongly clean matrix rings over commutative local rings, Preprint, 2005. · Zbl 1162.16016 [4] J.W.S. Cassels, Local Fields, LMST 3, Cambridge, 2003. [5] Chen, J.; Yang, X.; Zhou, Y., On strongly Clean matrix and triangular matrix rings, Comm. algebra, 34, 10, 3659-3674, (2006) · Zbl 1114.16024 [6] Chen, J.; Yang, X.; Zhou, Y., When is the \(2 \times 2\) matrix ring over a commutative local ring strongly Clean?, J. algebra, 301, 1, 280-293, (2006) · Zbl 1110.16029 [7] Chen, J.; Zhou, Y., Strongly Clean power series rings, Proc. Edinburgh math. soc., 50, 73-85, (2007) · Zbl 1128.16030 [8] Dischinger, M.F., Sur LES anneaux fortement π-réguliers, C.R. acad. sci. Paris, 283, 571-573, (1976) · Zbl 0338.16001 [9] Eisenbud, D., Commutative algebra with a view toward algebraic geometry, Graduate texts in mathematics, vol. 150, (1995), Springer-Verlag · Zbl 0819.13001 [10] Han, J.; Nicholson, W.K., Extensions of Clean rings, Comm. algebra, 29, 2589-2595, (2001) · Zbl 0989.16015 [11] Hirano, Y., Some characterizations of π-regular rings of bounded index, Math. J. okayama univ., 32, 97-101, (1990) · Zbl 0744.16005 [12] McDonald, B.R., Linear algebra over commutative rings, (1984), Marcel Dekker · Zbl 0556.13003 [13] Nagata, M., On the theory of Henselian rings, Nagoya math. J., 5, 45-57, (1953) · Zbl 0051.02601 [14] Nicholson, W.K., Local group rings, Canad. math. bull., 15, 137-138, (1972) · Zbl 0235.16008 [15] Nicholson, W.K., Lifting idempotents and exchange rings, Trans. amer. math. soc., 229, 269-278, (1977) · Zbl 0352.16006 [16] Nicholson, W.K., Strongly Clean rings and fitting’s lemma, Comm. algebra, 27, 3583-3592, (1999) · Zbl 0946.16007 [17] Cedó, F.; Rowen, L.H., Addendum to: examples of semiperfect rings [israel J. math. 65(3) (1989) 273-283], Israel J. math., 107, 343-348, (1998) [18] Wang, Z.; Chen, J., On two open problems about strongly Clean rings, Bull. aust. math. soc., 70, 279-282, (2004) · Zbl 1069.16035 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.