×

Massera type theorem for almost automorphic solutions of functional differential equations of neutral type. (English) Zbl 1122.34052

The authors consider the functional differential equation of neutral type \[ \frac{dD(x_t)}{dt}=L(x_t)+f(t),\qquad t\geq\sigma, \qquad x_{\sigma}=\varphi,\tag{1} \] where \(D\) and \(L\) are bounded linear operators from \(C([-r,0];\mathbb R^n)\) into \(\mathbb R^n\), \(f:[\sigma,+\infty[\) \(\to \mathbb R^n\) is a continuous function, \(\varphi\in C([-r,0];\mathbb R^n)\), and \(x_t(\theta)=x(t+\theta)\) for \(\theta\in[-r,0]\). There is proved that, under some natural conditions on \(D\) and \(f\), the existence of a bounded solution to \((1)\) on \(\mathbb R^+\) implies the existence of an almost automorphic solution to \((1)\).

MSC:

34K14 Almost and pseudo-almost periodic solutions to functional-differential equations
34K40 Neutral functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adimy, M.; Ezzinbi, K., Equation de type neutre et semi groupes intégrés, C. R. Acad. Sci. Paris Sér. I, 318, 529-534 (1994) · Zbl 0802.34078
[2] Adimy, M.; Ezzinbi, K.; Laklach, M., Spectral decomposition for partial neutral functional differential equations, Canadian Appl. Math. Quart., 9, 1-34 (2001) · Zbl 1112.34341
[3] Benkhalti, R.; Ezzinbi, K., A Massera type criterion for some partial functional differential equations, Dynam. Systems Appl., 9, 221-228 (2000) · Zbl 0953.34061
[4] Bochner, S., Continuous mappings of almost automorphic and almost automorphic functions, Proc. Nat. Sci. USA, 52, 907-910 (1964) · Zbl 0134.30102
[5] Bochner, S., A new approach to almost automorphicity, Proc. Nat. Sci. USA, 48, 2039-2043 (1962) · Zbl 0112.31401
[6] Diagana, T.; N’Guérékata, G. M.; Minh, N. V., Almost automorphic solutions of evolution equations, Proc. Amer. Math. Soc., 132, 3289-3298 (2004) · Zbl 1053.34050
[7] Fink, A., Almost Periodic Differential Equations, Lectures Notes, vol. 377 (1974), Springer-Verlag · Zbl 0325.34039
[8] J.A. Goldstein, G.M. N’Guérékata, Almost automorphic solutions of semilinear evolution equations, Proc. Amer. Math. Soc. in press; J.A. Goldstein, G.M. N’Guérékata, Almost automorphic solutions of semilinear evolution equations, Proc. Amer. Math. Soc. in press · Zbl 1073.34073
[9] Hale, J. K.; Lunel, S., Introduction to Functional Differential Equations (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0787.34002
[10] Hino, Y.; Murakami, S., Almost automorphic solutions of abstract functional differential equations, J. Math. Anal. Appl., 286, 741-752 (2003) · Zbl 1046.34088
[11] Hino, Y.; Murakami, S.; Naito, T.; Minh, N. V., A variation of constants formula for abstract functional differential equations in the phase space, J. Differential Equations, 179, 336-355 (2002) · Zbl 1005.34070
[12] Hino, Y.; Murakami, S.; Minh, N. V., Decomposition of variation of constants formula for abstract functional differential equations, Funkcial. Ekvac., 45, 341-372 (2002) · Zbl 1141.34336
[13] N’Guérékata, G. M., Almost Automorphic and Almost Automorphic Functions in Abstract Spaces (2001), Kluwer Academic: Kluwer Academic Amsterdam · Zbl 1001.43001
[14] N’Guérékata, G. M., Existence and uniqueness of almost automorphic mild solutions to some semilinear abstract differential equations, Semigroup Forum, 69, 8086 (2004) · Zbl 1077.47058
[15] N’Guérékata, G. M., Remarks on almost automorphic differential equations, (Dynamical Systems and Differential Equations. Dynamical Systems and Differential Equations, Kennesaw, GA, 2000. Dynamical Systems and Differential Equations. Dynamical Systems and Differential Equations, Kennesaw, GA, 2000, Discrete Contin. Dynam. Systems, Added Volume (2001)), 276-279 · Zbl 1301.34078
[16] N’Guérékata, G. M., Almost automorphy, almost periodicity and stability of motions in Banach spaces, Forum Math., 13, 581-588 (2001) · Zbl 0974.34058
[17] N’Guérékata, G. M., Topics in Almost Automorphy (2004), Springer-Verlag: Springer-Verlag New York · Zbl 1073.43004
[18] Liu, J.; N’Guérékata, G. M.; Minh, N. V., A Massera type theorem for almost automorphic solutions of differential equations, J. Math. Anal. Appl., 299, 587-599 (2004) · Zbl 1081.34054
[19] Massera, J. L., The existence of periodic solutions of systems of differential equations, Duke Math. J., 17, 457-475 (1950) · Zbl 0038.25002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.