×

Oscillation of second-order forced functional dynamic equations with oscillatory potentials. (English) Zbl 1123.34051

Oscillation criteria for the second order forced dynamic equation of the form
\[ (rx^{\Delta})^{\Delta}(t)+p(t)| x(\tau(t))|^{-1}x(\tau(t))+q(t)| x(\theta(t))|^{-1}x(\theta(t))=f(t) \]
are established. Four nice examples from difference equations illustrating the results are presented. The results can also be applied to second-order dynamic equations regardless of the choice of delta or nabla derivatives.

MSC:

34K11 Oscillation theory of functional-differential equations
39A11 Stability of difference equations (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agarwal R.P., Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations (2002)
[2] DOI: 10.1016/j.jmaa.2004.06.041 · Zbl 1062.34068
[3] DOI: 10.1007/BF02831928 · Zbl 1089.39001
[4] Anderson D.R., Australian Journal of Mathematical Analysis and Applications 3 pp 1– (2006)
[5] Bohner M., Dynamic Equations on Time Scales, An Introduction with Applications (2001) · Zbl 0978.39001
[6] DOI: 10.1007/978-0-8176-8230-9
[7] Bohner M., Pacific Journal of Mathematics
[8] DOI: 10.1016/j.camwa.2005.02.005 · Zbl 1093.34552
[9] DOI: 10.1016/j.camwa.2006.02.002 · Zbl 1138.34335
[10] Hilger S., Results in Mathematics 18 pp 18– (1990)
[11] DOI: 10.1016/S0022-247X(02)00029-X · Zbl 1013.34067
[12] DOI: 10.1006/jmaa.1997.5423 · Zbl 0884.34075
[13] Saker S.H., Elec. J. Qualitative Theory Differential Equations 23 pp 1– (2005)
[14] DOI: 10.1016/j.cam.2005.03.039 · Zbl 1097.39003
[15] DOI: 10.1016/S0022-247X(03)00460-8 · Zbl 1042.34096
[16] DOI: 10.1006/jmaa.1998.6259 · Zbl 0922.34029
[17] DOI: 10.1006/jmaa.2000.7376 · Zbl 0987.34024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.