×

Fuzzy lattice reasoning (FLR) classifier and its application for ambient ozone estimation. (English) Zbl 1123.68106

Summary: The Fuzzy Lattice Reasoning (FLR) classifier is presented for inducing descriptive, decision-making knowledge (rules) in a mathematical lattice data domain including space \(R^{N}\). Tunable generalization is possible based on non-linear (sigmoid) positive valuation functions; moreover, the FLR classifier can deal with missing data. Learning is carried out both incrementally and fast by computing disjunctions of join-lattice interval conjunctions, where a join-lattice interval conjunction corresponds to a hyperbox in \(R^{N}\). Our testbed in this work concerns the problem of estimating ambient ozone concentration from both meteorological and air-pollutant measurements. The results compare favorably with results obtained by C4.5 decision trees, fuzzy-ART as well as back-propagation neural networks. Novelties and advantages of classifier FLR are detailed extensively and in comparison with related work from the literature.

MSC:

68T05 Learning and adaptive systems in artificial intelligence
86A10 Meteorology and atmospheric physics
68T37 Reasoning under uncertainty in the context of artificial intelligence
68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)

Software:

C4.5
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ajmal, N.; Thomas, K. V., Fuzzy lattices, Information Sciences, 79, 3-4, 271-291 (1994) · Zbl 0798.06014
[2] Angelov, P. P., Evolving Rule-Based Models. Evolving Rule-Based Models, Studies in Fuzziness and Soft Computing, vol. 92 (2002), Physica-Verlag: Physica-Verlag Heidelberg, Germany · Zbl 1043.93001
[3] Anagnostopoulos, G. C.; Georgiopoulos, M., Category regions as new geometrical concepts in Fuzzy-ART and Fuzzy-ARTMAP, Neural Networks, 15, 10, 1205-1221 (2002)
[4] Athanasiadis, I. N.; Kaburlasos, V. G.; Mitkas, P. A.; Petridis, V., Applying machine learning techniques on air quality data for real-time decision support, (Proceedings of the 1st ICSC-NAISO Symposium on Information Technologies in Environmental Engineering (ITEE’2003) (June 2003), ICSC-NAISO Academic Press: ICSC-NAISO Academic Press Gdansk, Poland), 51
[5] Athanasiadis, I. N.; Mitkas, P. A., An agent-based intelligent environmental monitoring system, Management of Environmental Quality, 15, 3, 238-249 (2004)
[6] Baralis, E.; Ceri, S.; Paraboschi, S., Compile-time and runtime analysis of active behaviors, IEEE Transactions on Knowledge Data Engineering, 10, 3, 353-370 (1998)
[7] M.R. Berthold, K.-P. Huber, Constructing fuzzy graphs from examples, International Computer Science Institute, Berkeley, California, Technical Report TR-97-053, 1997.; M.R. Berthold, K.-P. Huber, Constructing fuzzy graphs from examples, International Computer Science Institute, Berkeley, California, Technical Report TR-97-053, 1997. · Zbl 1059.68600
[8] Birkhoff, G., Lattice Theory, vol. 25 (1967), Colloquium Publications, American Mathematical Society: Colloquium Publications, American Mathematical Society Providence, RI · Zbl 0126.03801
[9] Blumer, A.; Ehrenfeucht, A.; Haussler, D.; Warmuth, M. K., Learnability and the Vapnik-Chervonenkis dimension, Journal of the ACM, 36, 4, 929-965 (1989) · Zbl 0697.68079
[10] Breiman, L., Bagging predictors, Machine Learning, 24, 2, 123-140 (1996) · Zbl 0858.68080
[11] Burillo, P.; Frago, N.; Fuentes, R., Inclusion grade and fuzzy implication operators, Fuzzy Sets and Systems, 114, 3, 417-429 (2000) · Zbl 0962.03050
[12] Carpineto, C.; Romano, G., A lattice conceptual clustering system and its application to browsing retrieval, Machine Learning, 24, 2, 95-122 (1996)
[13] Chakrabarty, K., On fuzzy lattice, (Ziarko, W.; Yao, Y., Lecture Notes in Artificial Intelligence, vol. 2005 (2001), Springer-Verlag: Springer-Verlag Berlin), 238-242 · Zbl 1013.06014
[14] Clappa, L. J.; Jenkin, M. E., Analysis of the relationship between ambient levels of \(O_3, NO_2\) and NO as a function of \(NO_X\) in the UK, Atmospheric Environment, 35, 36, 6391-6405 (2001)
[15] Cornelis, C.; Donck, Van der; Kerre, E., Sinha-Dougherty approach to the fuzzification of set inclusion revisited, Fuzzy Sets and Systems, 134, 2, 283-295 (2003) · Zbl 1013.03063
[16] Cornelis, C.; De Cock, M.; Kerre, E., Efficient approximate reasoning with positive and negative information, (Negoita, M. Gh.; etal., Lecture Notes in Artificial Intelligence, vol. 3214 (2004), Springer-Verlag: Springer-Verlag Berlin), 779-785
[17] Davey, B. A.; Priestley, H. A., Introduction to Lattices and Order (1990), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0701.06001
[18] Diamond, P.; Kloeden, P., Metric Spaces of Fuzzy Sets (1994), World Scientific: World Scientific Singapore · Zbl 0843.54041
[19] Dietterich, T. G.; Lathrop, R. H.; Lozano-Perez, T., Solving the multiple-instance problem with axis-parallel rectangles, Artificial Intelligence, 89, 1-2, 31-71 (1997) · Zbl 1042.68650
[20] P. Domingos, Two-way induction, in: Proceedings of the 7th International Conference on Tools with Artificial Intelligence, Herndon, VA, 1995, pp. 182-189.; P. Domingos, Two-way induction, in: Proceedings of the 7th International Conference on Tools with Artificial Intelligence, Herndon, VA, 1995, pp. 182-189.
[21] Domingos, P., Unifying instance-based and rule-based induction, Machine Learning, 24, 2, 141-168 (1996)
[22] Dougherty, E. R.; Sinha, D., Computational gray-scale mathematical morphology on lattices (a comparator-based image algebra) part II: image operators, Real-Time Imaging, 1, 283-295 (1995)
[23] Dubois, D.; Prade, H.; Ughetto, L., A new perspective on reasoning with fuzzy rules, International Journal of Intelligent Systems, 18, 5, 541-563 (2003) · Zbl 1038.68115
[24] Duda, R. O.; Hart, P. E.; Stork, D. G., Pattern Classification (2001), John Wiley & Sons: John Wiley & Sons New York, NY · Zbl 0968.68140
[25] Edmonds, E. A., Lattice fuzzy logics, International Journal of Man-Machine Studies, 13, 455-465 (1980) · Zbl 0447.94063
[26] Fan, J.; Xie, W.; Pei, J., Subsethood measure: new definitions, Fuzzy Sets and Systems, 106, 2, 201-209 (1999) · Zbl 0968.94026
[27] Gabrys, B.; Bargiela, A., General fuzzy min-max neural network for clustering and classification, IEEE Transactions on Neural Networks, 11, 3, 769-783 (2000)
[28] Gaines, B. R., Fuzzy and probability uncertainty logics, Information and Control, 38, 154-169 (1978) · Zbl 0391.03015
[29] Ganter, B.; Wille, R., Formal Concept Analysis: Mathematical Foundations (1999), Springer-Verlag: Springer-Verlag Heidelberg, Germany · Zbl 0909.06001
[30] Goguen, J. A., \(L\)-fuzzy sets, Journal of Mathematical Analysis and Applications, 18, 145-174 (1967) · Zbl 0145.24404
[31] Goutsias, J.; Heijmans, H. J.A. M., Nonlinear multiresolution signal decomposition schemes. I. Morphological pyramids, IEEE Transactions on Image Processing, 9, 11, 1862-1876 (2000) · Zbl 0962.94031
[32] Grzegorzewski, P., Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric, Fuzzy Sets and Systems, 148, 2, 319-328 (2004) · Zbl 1056.03031
[33] Haussler, D., Learning conjunctive concepts in structural domains, Machine Learning, 4, 1, 7-40 (1989)
[34] Healy, M. J.; Caudell, T. P., Acquiring rule sets as a product of learning in a logical neural architecture, IEEE Transactions on Neural Networks, 8, 3, 461-474 (1997)
[35] S. Hedges, Ozone monitoring, mapping, and public outreach: delivering real-time ozone information to your community, Technical Report EPA/625/R-99/007, United States Environmental Protection Agency, 1999.; S. Hedges, Ozone monitoring, mapping, and public outreach: delivering real-time ozone information to your community, Technical Report EPA/625/R-99/007, United States Environmental Protection Agency, 1999.
[36] Heijmans, H. J.A. M.; Goutsias, J., Nonlinear multiresolution signal decomposition schemes. II. Morphological wavelets, IEEE Transactions on Image Processing, 9, 11, 1897-1913 (2000) · Zbl 0962.94032
[37] Heilpern, S., Representation and application of fuzzy numbers, Fuzzy Sets and Systems, 91, 2, 259-268 (1997) · Zbl 0920.04011
[38] J.M. Hellerstein, E. Koutsoupias, C.H. Papadimitriou, On the analysis of indexing schemes, in: Proceedings ACM Symposium on Principles of Database Systems, 1997, pp. 249-256.; J.M. Hellerstein, E. Koutsoupias, C.H. Papadimitriou, On the analysis of indexing schemes, in: Proceedings ACM Symposium on Principles of Database Systems, 1997, pp. 249-256.
[39] Hirota, K.; Pedrycz, W., Fuzzy computing for data mining, Proceedings of the IEEE, 87, 9, 1575-1600 (1999)
[40] Huang, L.-S.; Smith, R. L., Meteorologically-depended trends in urban ozone, Environmetrics, 10, 1, 103-118 (1999)
[41] Ishibuchi, H.; Nakashima, T.; Murata, T., Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems, IEEE Transactions on Systems, Man and Cybernetics - Part B, 29, 5, 601-618 (1999)
[42] (Itô, K., Encyclopedic Dictionary of Mathematics, second ed. (1987), The Mathematical Society of Japan: The Mathematical Society of Japan Cambridge, MA), (English translation by MIT Press) · Zbl 0674.00025
[43] Jain, A. K.; Murty, M. N.; Flynn, P. J., Data clustering: a review, ACM Computing Surveys, 31, 3, 264-323 (1999)
[44] Jang, J.-S. R.; Sun, C.-T., Neuro-fuzzy modeling and control, Proceedings of the IEEE, 83, 3, 378-406 (1995)
[45] V.G. Kaburlasos, Adaptive resonance theory with supervised learning and large database applications, Ph.D. dissertation, Dept. Electrical Engineering, University of Nevada, Reno, 1992.; V.G. Kaburlasos, Adaptive resonance theory with supervised learning and large database applications, Ph.D. dissertation, Dept. Electrical Engineering, University of Nevada, Reno, 1992.
[46] Kaburlasos, V. G., FINs: Lattice theoretic tools for improving prediction of sugar production from populations of measurements, IEEE Transactions on Systems, Man and Cybernetics - Part B, 34, 2, 1017-1030 (2004)
[47] Kaburlasos, V. G., Towards a unified modeling and knowledge-representation based on lattice theory – computational intelligence and soft computing applications, Studies in Computational Intelligence, vol. 27 (2006), Springer: Springer Heidelberg, Germany · Zbl 1139.68051
[48] Kaburlasos, V. G.; Kehagias, A., Novel fuzzy inference system (FIS) analysis and design based on lattice theory, Part I: Working principles, International Journal of General Systems, 35, 1, 45-67 (2006) · Zbl 1118.62004
[49] V.G. Kaburlasos, A. Kehagias, Novel fuzzy inference system (FIS) analysis and design based on lattice theory, IEEE Transactions on Fuzzy Systems, in press.; V.G. Kaburlasos, A. Kehagias, Novel fuzzy inference system (FIS) analysis and design based on lattice theory, IEEE Transactions on Fuzzy Systems, in press. · Zbl 1118.62004
[50] Kaburlasos, V. G.; Papadakis, S. E., Granular self-organizing map (grSOM) for structure identification, Neural Networks, 19, 5, 623-643 (2006) · Zbl 1100.68093
[51] Kaburlasos, V. G.; Petridis, V., Fuzzy lattice neurocomputing (FLN): a novel connectionist scheme for versatile learning and decision making by clustering, International Journal of Computers and Their Applications, 4, 3, 31-43 (1997)
[52] Kaburlasos, V. G.; Petridis, V., Fuzzy lattice neurocomputing (FLN) models, Neural Networks, 13, 10, 1145-1170 (2000)
[53] Kaburlasos, V. G.; Petridis, V., Learning and decision-making in the framework of fuzzy lattices, (Jain, L. C.; Kacprzyk, J., New Learning Paradigms in Soft Computing. New Learning Paradigms in Soft Computing, Studies in Fuzziness and Soft Computing, vol. 84 (2002), Physica-Verlag: Physica-Verlag Heidelberg, Germany), 55-96 · Zbl 0987.68060
[54] V.G. Kaburlasos, V. Petridis, B. Allotta, P. Dario, Automatic detection of bone breakthrough in orthopedics by fuzzy lattice reasoning (FLR): the case of drilling in the osteosynthesis of long bones, in: Proceedings of the Mechatronical Computer Systems for Perception and Action, Pisa, Italy, 1997, pp. 33-40.; V.G. Kaburlasos, V. Petridis, B. Allotta, P. Dario, Automatic detection of bone breakthrough in orthopedics by fuzzy lattice reasoning (FLR): the case of drilling in the osteosynthesis of long bones, in: Proceedings of the Mechatronical Computer Systems for Perception and Action, Pisa, Italy, 1997, pp. 33-40.
[55] Kaburlasos, V. G.; Petridis, V.; Brett, P.; Baker, D., Estimation of the stapes-bone thickness in stapedotomy surgical procedure using a machine-learning technique, IEEE Transactions on Information Technology in Biomedicine, 3, 4, 268-277 (1999)
[56] E. Kalapanidas, N. Avouris, Applying machine learning techniques in air quality prediction, in: Proceedings of the ACAI, Chania, Greece, 1999, pp. 58-64.; E. Kalapanidas, N. Avouris, Applying machine learning techniques in air quality prediction, in: Proceedings of the ACAI, Chania, Greece, 1999, pp. 58-64.
[57] Kalapanidas, E.; Avouris, N., Air quality management using a multi-agent system, International Journal of Computer Aided Civil and Infrastructure Engineering, 17, 2, 119-130 (2002)
[58] Karnik, N. N.; Mendel, J. M.; Liang, Qilian, Type-2 fuzzy logic systems, Transactions on Fuzzy Systems, 7, 6, 643-658 (1999)
[59] Kearns, M.; Li, M.; Valiant, L., Learning Boolean formulas, Journal of the Association of Computing Machinery, 41, 6, 1298-1328 (1994) · Zbl 0830.68108
[60] Kearns, M. J.; Vazirani, U. V., An Introduction to Computational Learning Theory (1994), MIT Press: MIT Press Cambridge, MA
[61] Kehagias, A., An example of \(L\)-fuzzy join space, Rendiconti del Circolo Matematico di Palermo, 51, 2, 503-526 (2002) · Zbl 1072.06004
[62] Kehagias, A.; Konstantinidou, M., \(L\)-fuzzy valued inclusion measure, \(L\)-fuzzy similarity and \(L\)-fuzzy distance, Fuzzy Sets and Systems, 136, 3, 313-332 (2003) · Zbl 1020.03055
[63] Kehagias, A.; Petridis, V.; Kaburlasos, V. G.; Fragkou, P., A comparison of word- and sense-based text categorization using several classification algorithms, Journal of Intelligent Information Systems, 21, 3, 227-247 (2003)
[64] Klir, G. J.; Folger, T. A., Fuzzy Sets, Uncertainty, and Information (1988), Prentice-Hall International Editions: Prentice-Hall International Editions London, UK · Zbl 0675.94025
[65] Knuth, D. E., Sorting and Searching, The Art of Computer Programming, vol. 3 (1998), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0918.68079
[66] Knuth, K. H., Lattice duality: the origin of probability and entropy, Neurocomputing, 67, 245-274 (2005)
[67] Kolodner, J., Case-Based Reasoning (1993), Morgan Kaufman Publishers: Morgan Kaufman Publishers San Mateo, CA
[68] Kosko, B., Fuzzy Engineering (1997), Prentice-Hall: Prentice-Hall Upper Saddle River, NJ · Zbl 0895.94015
[69] S. Larrsen, L.O. Hagen, Air pollution monitoring in Europe. Problems and trends, Topic Report 26/1996, European Environment Agency, Copenhagen, Denmark, 1996.; S. Larrsen, L.O. Hagen, Air pollution monitoring in Europe. Problems and trends, Topic Report 26/1996, European Environment Agency, Copenhagen, Denmark, 1996.
[70] Lavoie, P.; Crespo, J.-F.; Savaria, Y., Generalization, discrimination, and multiple categorization using adaptive resonance theory, IEEE Transactions on Neural Networks, 10, 4, 757-767 (1999)
[71] Liang, H. M.; Mendel, J. M., Interval type-2 fuzzy logic systems: theory and design, Transactions on Fuzzy Systems, 8, 5, 535-550 (2000)
[72] Long, P. M.; Tan, L., PAC learning axis-aligned rectangles with respect to product distributions from multiple-instance examples, Machine Learning, 30, 1, 7-21 (1998) · Zbl 0892.68082
[73] Liu, Z.-Q.; Yan, F., Fuzzy neural network in case-based diagnostic system, IEEE Transactions on Fuzzy Systems, 5, 2, 209-222 (1997)
[74] Mamdani, E. H.; Assilian, S., An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies, 7, 1-13 (1975) · Zbl 0301.68076
[75] C.J. Mantas, J.M. Puche, J.M. Mantas, Extraction of similarity based fuzzy rules from artificial neural networks, International Journal of Approximate Reasoning. Available online 3 May 2006.; C.J. Mantas, J.M. Puche, J.M. Mantas, Extraction of similarity based fuzzy rules from artificial neural networks, International Journal of Approximate Reasoning. Available online 3 May 2006. · Zbl 1119.68155
[76] Maragos, P., Lattice image processing: a unification of morphological and fuzzy algebraic systems, Journal of Mathematical Imaging and Vision, 22, 2-3, 333-353 (2005) · Zbl 1478.94066
[77] Mitchell, T. M., Machine Learning. Machine Learning, McGraw-Hill Series in Computer Science (1997), The McGraw-Hill Companies, Inc.: The McGraw-Hill Companies, Inc. New York, NY · Zbl 0913.68167
[78] Mugica, F.; Nebot, A., Reasoning under uncertainty with FIR methodology, International Journal of Approximate Reasoning, 41, 3, 287-313 (2006) · Zbl 1093.68116
[79] Nanda, S., Fuzzy lattice, Bulletin Calcutta Mathematical Society, 81, 201-202 (1989) · Zbl 0677.06002
[80] Nauck, D., Special issue on hybrid methods for adaptive systems, Fuzzy Sets and Systems, 147, 1, 1-2 (2004)
[81] Nauck, D.; Kruse, R., A neuro-fuzzy method to learn fuzzy classification rules from data, Fuzzy Sets and Systems, 89, 3, 277-288 (1997)
[82] Nauck, D.; Kruse, R., Obtaining interpretable fuzzy classification rules from medical data, Artificial Intelligence in Medicine, 16, 2, 149-169 (1999)
[83] Nauck, D.; Kruse, R., Neuro-fuzzy systems for function approximation, Fuzzy Sets and Systems, 101, 2, 261-271 (1999) · Zbl 0937.93029
[84] Papadakis, S. E.; Theocharis, J. B., A GA based fuzzy modeling approach for generating TSK models, Fuzzy Sets and Systems, 131, 2, 121-152 (2002) · Zbl 1010.93500
[85] Parrado-Hernández, E.; Gómez-Sánchez, E.; Dimitriadis, Y. A., Study of distributed learning as a solution to category proliferation in Fuzzy ARTMAP based neural systems, Neural Networks, 16, 7, 1039-1057 (2003)
[86] Paul, S.; Kumar, S., Subsethood-product fuzzy neural inference system (SuPFuNIS), IEEE Transactions on Neural Networks, 13, 3, 578-599 (2002)
[87] Pedrycz, W., Granular networks and granular computing, (Jain, L. C.; Kacprzyk, J., New Learning Paradigms in Soft Computing. New Learning Paradigms in Soft Computing, Studies in Fuzziness and Soft Computing, vol. 84 (2002), Physica-Verlag: Physica-Verlag Heidelberg, Germany), 30-54 · Zbl 0987.68059
[88] Pedrycz, W.; Bargiela, A., Granular clustering: a granular signature of data, IEEE Transactions on Systems, Man and Cybernetics - Part B, 32, 2, 212-224 (2002)
[89] Petridis, V.; Kaburlasos, V. G., Fuzzy lattice neural network (FLNN): a hybrid model for learning, IEEE Transactions on Neural Networks, 9, 5, 877-890 (1998)
[90] Petridis, V.; Kaburlasos, V. G., Learning in the framework of fuzzy lattices, IEEE Transactions on Fuzzy Systems, 7, 4, 422-440 (1999), Errata in IEEE Transactions on Fuzzy Systems 8 (2) (2000) 236
[91] Petridis, V.; Kaburlasos, V. G., Clustering and classification in structured data domains using fuzzy lattice neurocomputing (FLN), IEEE Transactions on Knowledge and Data Engineering, 13, 2, 245-260 (2001)
[92] Petridis, V.; Kaburlasos, V. G., FINkNN: a fuzzy interval number \(k\)-nearest neighbor classifier for prediction of sugar production from populations of samples, Journal of Machine Learning Research, 4, Apr., 17-37 (2003) · Zbl 1085.68663
[93] Priss, U., Lattice-based information retrieval, Knowledge Organization, 27, 3, 132-142 (2000)
[94] Quinlan, J. R., Induction of decision trees, Machine Learning, 1, 1, 81-106 (1986)
[95] Quinlan, J. R., Decision trees and decision-making, IEEE Transactions on Systems, Man and Cybernetics, 20, 2, 339-346 (1990)
[96] Quinlan, J. R., C4.5: Programs for Machine Learning (1993), Morgan Kaufman Publishers: Morgan Kaufman Publishers San Mateo, CA
[97] Ritter, G. X.; Urcid, G., Lattice algebra approach to single-neuron computation, IEEE Transactions on Neural Networks, 14, 2, 282-295 (2003)
[98] Ruiz-Suarez, J. C.; Mayora-Ibara, O. A.; Torres-Jimenez, J.; Ruiz-Suarez, L. G., Short-term ozone forecasting by artificial neural networks, Advances in Engineering Software, 23, 3, 143-149 (1995)
[99] Salzberg, S., A nearest hyperrectangle learning method, Machine Learning, 6, 3, 251-276 (1991)
[100] Setiono, R.; Leow, W. K.; Zurada, J. M., Extraction of rules from artificial neural networks and nonlinear regression, IEEE Transactions on Neural Networks, 13, 3, 564-577 (2002)
[101] Shoham, Y., An overview of agent-oriented programming, (Bradshaw, J. M., Software Agents (1997), MIT Press: MIT Press Cambridge, MA), 271-290
[102] Simpson, P. K., Fuzzy min-max neural networks - Part 1: Classification, IEEE Transactions on Neural Networks, 3, 5, 776-786 (1992)
[103] Simpson, P. K., Fuzzy min-max neural networks - Part 2: Clustering, IEEE Transactions on Fuzzy Systems, 1, 1, 32-45 (1993)
[104] Sinha, D.; Dougherty, E. R., Fuzzification of set inclusion: theory and applications, Fuzzy Sets and Systems, 55, 1, 15-42 (1993) · Zbl 0788.04007
[105] Sinha, D.; Dougherty, E. R., A general axiomatic theory of intrinsically fuzzy mathematical morphologies, IEEE Transactions on Fuzzy Systems, 3, 4, 389-403 (1995)
[106] Sowa, J. F., Knowledge Representation: Logical, Philosophical, and Computational Foundations (2000), Brooks Cole Publishing Co.: Brooks Cole Publishing Co. Pacific Grove, CA
[107] Sun, Z.; Finnie, G.; Weber, K., Case base building with similarity relations, Information Sciences, 165, 1-2, 21-43 (2004) · Zbl 1089.68129
[108] Sussner, P., Associative morphological memories based on variations of the kernel and dual kernel methods, Neural Networks, 16, 5-6, 625-632 (2003)
[109] Tagaki, T.; Sugeno, M., Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man, and Cybernetics, 15, 116-132 (1985) · Zbl 0576.93021
[110] Tan, A. H., Cascade ARTMAP: integrating neural computation and symbolic knowledge processing, IEEE Transactions on Neural Networks, 8, 2, 237-250 (1997)
[111] Tepavcevic, A.; Trajkovski, G., \(L\)-fuzzy lattices: an introduction, Fuzzy Sets and Systems, 123, 2, 209-216 (2001) · Zbl 1009.06007
[112] Timm, H.; Döring, C.; Kruse, R., Different approaches to fuzzy clustering of incomplete datasets, International Journal of Approximate Reasoning, 35, 3, 239-249 (2004) · Zbl 1068.68140
[113] Valiant, L. G., A theory of the learnable, Communications of the ACM, 27, 11, 1134-1142 (1984) · Zbl 0587.68077
[114] Wettschereck, D.; Dietterich, T. G., An experimental comparison of the nearest-neighbor and nearest-hyperrectangle algorithms, Machine Learning, 19, 1, 5-27 (1995)
[115] Witten, I. H.; Frank, E., Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations (1999), Morgan Kaufman Publishers: Morgan Kaufman Publishers San Mateo, CA, The WEKA platform is available at:
[116] Xie, Y.; Raghavan, V. V.; Dhatric, P.; Zhao, X., A new fuzzy clustering algorithm for optimally finding granular prototypes, International Journal of Approximate Reasoning, 40, 1-2, 109-124 (2005)
[117] Yi, J.; Prybutok, V. R., A neural network model for the prediction of daily maximum ozone concentration in an industrialized urban area, Environmental Pollution, 92, 3, 349-357 (1996)
[118] Young, V. R., Fuzzy subsethood, Fuzzy Sets and Systems, 77, 3, 371-384 (1996) · Zbl 0872.94062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.