Marcellán, Francisco; Sfaxi, Ridha Second structure relation for semiclassical orthogonal polynomials. (English) Zbl 1125.33008 J. Comput. Appl. Math. 200, No. 2, 537-554 (2007). Authors’ summary: Classical orthogonal polynomials are characterized from their orthogonality and by a first or second structure relation. For the semiclassical orthogonal polynomials (a generalization of the classical ones), the authors find only the first structure relation in the literature. In this paper, they establish a second structure relation. In particular, they deduce it by means of a general finite-type relation between a semiclassical polynomial sequence and the sequence of its monic derivatives. Reviewer: Francisco Perez Acosta (La Laguna) Cited in 11 Documents MSC: 33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) 42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis Keywords:finite-type relation; recurrence relations; orthogonal polynomials; semiclassical linear functionals × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] Al-Salam, W. A., Characterization theorems for orthogonal polynomials, (Nevai, P., Orthogonal Polynomials: Theory and Practice, NATO ASI Series, C 294 (1990), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 1-24 · Zbl 0133.32305 [2] Al-Salam, W. A.; Chihara, T. S., Another characterization of classical orthogonal polynomials, SIAM J. Math. Anal., 3, 65-70 (1972) · Zbl 0238.33010 [3] M. Bachène, Les polynômes semi-classiques de classe zéro et de classe un, Thèse de troisième cycle, Université Pierre et Marie Curie, Paris VI, 1986.; M. Bachène, Les polynômes semi-classiques de classe zéro et de classe un, Thèse de troisième cycle, Université Pierre et Marie Curie, Paris VI, 1986. [4] Bonan, S.; Lubinsky, D.; Nevai, P., Orthogonal polynomials and their derivatives II, SIAM J. Math. Anal., 18, 1163-1176 (1987) · Zbl 0638.42023 [5] Bonan, S.; Nevai, P., Orthogonal polynomials and their derivatives I, J. Approx. Theory, 40, 134-147 (1984) · Zbl 0533.42015 [6] Branquinho, A., A note on semi-classical orthogonal polynomials, Bull. Belg. Math. Soc., 3, 1-12 (1996) · Zbl 0862.42018 [7] Chihara, T. S., An Introduction to Orthogonal Polynomials (1978), Gordon and Breach: Gordon and Breach New York · Zbl 0389.33008 [8] Geronimus, Ya. L., On polynomials orthogonal with respect to numerical sequences and on Hahn’s theorem, Izv. Akad. Nauk, 4, 215-228 (1940), (in Russian) [9] Hahn, W., Über die Jacobischen Polynome und zwei vervandte Polynomklassen, Math. Z., 39, 634-638 (1935) · JFM 61.0377.01 [10] Marcellán, F.; Branquinho, A.; Petronilho, J., Classical orthogonal polynomials: a functional approach, Acta Appl. Math., 34, 283-303 (1994) · Zbl 0793.33009 [11] P. Maroni, Un exemple d’ une suite orthogonal semi-classique de classe 1, Publ. Labo. d’Analyse Numérique, Université Pierre et Marie Curie, Paris VI, CNRS 89033, 1989.; P. Maroni, Un exemple d’ une suite orthogonal semi-classique de classe 1, Publ. Labo. d’Analyse Numérique, Université Pierre et Marie Curie, Paris VI, CNRS 89033, 1989. [12] Maroni, P., Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, (Brezinski, C.; etal., Orthogonal Polynomials and their Applications, Annals on Computing and Applied Mathematics, vol. 9 (1991), Baltzer: Baltzer Basel), 95-130 · Zbl 0944.33500 [13] Maroni, P., Fonctions eulériennes, Polynômes orthogonaux classiques, Techniques de l’ingénieur A, 154, 1-30 (1994) [14] Maroni, P., Semi-classical character and finite-type relations between polynomial sequences, J. Appl. Num. Math., 31, 295-330 (1999) · Zbl 0962.42017 [15] Maroni, P.; Sfaxi, R., Diagonal orthogonal polynomial sequences, Meth. Appl. Anal., 7, 769-792 (2000) · Zbl 1025.42013 [16] R. Sfaxi, F. Marcellán, Weak-regularity result in first-order linear differential equation, submitted.; R. Sfaxi, F. Marcellán, Weak-regularity result in first-order linear differential equation, submitted. [17] Shohat, J., A differential equation for orthogonal polynomials, Duke Math. J., 5, 401-417 (1939) · JFM 65.0285.03 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.