Zhang, Qi; Zhao, Huaizhong Stationary solutions of SPDEs and infinite horizon BDSDEs. (English) Zbl 1127.60059 J. Funct. Anal. 252, No. 1, 171-219 (2007). Summary: In this paper we study the existence of stationary solutions for stochastic partial differential equations. We establish a new connection between \(L^2_{\rho}(\mathbb R^d; \mathbb R^1) \otimes L^2_{\rho} (\mathbb R^d; \mathbb R^d)\) valued solutions of backward doubly stochastic differential equations (BDSDEs) on infinite horizon and the stationary solutions of the SPDEs. Moreover, we prove the existence and uniqueness of the solutions of BDSDEs on both finite and infinite horizons so obtaining the solutions of initial value problems and the stationary solutions (independent of any initial value) of SPDEs. The connection of the weak solutions of SPDEs and BDSDEs has independent interests in the areas of both SPDEs and BSDEs. Cited in 1 ReviewCited in 42 Documents MSC: 60H15 Stochastic partial differential equations (aspects of stochastic analysis) Keywords:backward doubly stochastic differential equations; weak solutions; stochastic partial differential equations; stationary solution; random dynamical systems × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] Arnold, L., Random Dynamical Systems (1998), Springer-Verlag: Springer-Verlag Berlin · Zbl 0906.34001 [2] Arnold, L.; Scheutzow, M., Perfect cocycles through stochastic differential equations, Probab. Theory Related Fields, 101, 65-88 (1995) · Zbl 0821.60061 [3] Bally, V.; Matoussi, A., Weak solutions for SPDEs and backward doubly stochastic differential equations, J. Theoret. Probab., 14, 125-164 (2001) · Zbl 0982.60057 [4] Barles, G.; Lesigne, E., SDE, BSDE and PDE, (Backward Stochastic Differential Equations. Backward Stochastic Differential Equations, Pitman Res. Notes Math., Ser., vol. 364 (1997), Longman: Longman Harlow), 47-80 · Zbl 0886.60049 [5] Brzezniak, Z.; Gatarek, D., Martingale solutions and invariant measures for stochastic evolution in Banach spaces, Stochastic Process. Appl., 84, 187-226 (1999) · Zbl 0996.60074 [6] Brzezniak, Z.; Li, Y., Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains, Trans. Amer. Math. Soc., 358, 5587-5629 (2006) · Zbl 1113.60062 [7] Caraballo, T.; Kloeden, P. E.; Schmalfuss, B., Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl. Math. Optim., 50, 183-207 (2004) · Zbl 1066.60058 [8] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions (1992), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0761.60052 [9] Da Prato, G.; Zabczyk, J., Ergodicity for Infinite Dimensional Systems, London Math. Soc. Lecture Note Ser. (1996), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0849.60052 [10] Duan, J.; Lu, K.; Schmalfuss, B., Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31, 2109-2135 (2003) · Zbl 1052.60048 [11] Duan, J.; Lu, K.; Schmalfuss, B., Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16, 949-972 (2004) · Zbl 1065.60077 [12] Flandoli, F., Dissipativity and invariant measures for stochastic Navier-Stokes equations, Nonlinear Differential Equations Appl., 1, 403-426 (1994) · Zbl 0820.35108 [13] Hairer, M.; Mattingly, J., Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. of Math. (2), 164, 993-1032 (2006) · Zbl 1130.37038 [14] E, W.; Khanin, K.; Mazel, A.; Sinai, Ya., Invariant measures for Burgers equation with stochastic forcing, Ann. of Math. (2), 151, 877-960 (2000) · Zbl 0972.35196 [15] Elworthy, K. D.; Truman, A.; Zhao, H. Z., A generalized Itô formulae and space-time Lebesgue-Stieltjes integrals of local times, Sèmin. Probab., 40, 117-136 (2007) · Zbl 1126.60044 [16] Krylov, N. V., An analytic approach to SPDEs, (Carmona, R. A.; Rozovskii, B., Stochastic Partial Equations: Six Perspectives. Stochastic Partial Equations: Six Perspectives, Math. Surveys Monogr., vol. 64 (1999), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 183-242 · Zbl 0933.60073 [17] Kunita, H., Stochastic Flows and Stochastic Differential Equations (1990), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0743.60052 [18] Kunita, H., Stochastic flow acting on Schwartz distributions, J. Theoret. Probab., 7, 2, 247-278 (1994) · Zbl 0818.60044 [19] Li, W.; Lu, K., Sternberg theorems for random dynamical systems, Comm. Pure Appl. Math., 58, 941-988 (2005) · Zbl 1075.37015 [20] Y. Liu, H.Z. Zhao, Representation of pathwise stationary solutions of stochastic Burgers equations, preprint; Y. Liu, H.Z. Zhao, Representation of pathwise stationary solutions of stochastic Burgers equations, preprint · Zbl 1192.60083 [21] Mohammed, S.-E. A.; Zhang, T.; Zhao, H. Z., The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations, Mem. Amer. Math. Soc., 196 (2008), in press · Zbl 1169.60014 [22] Pardoux, E., Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order, (Decreusefond, L.; Gjerde, J.; Oksendal, B.; Ustunel, A. S., Stochastic Analysis and Related Topics: The Geilo Workshop, 1996 (1998), Birkhäuser: Birkhäuser Basel), 79-127 · Zbl 0893.60036 [23] Pardoux, E., Stochastic Partial Differential Equations, Fudan Lecture Notes (2007), Fudan Univ. Press · Zbl 0777.60054 [24] Pardoux, E.; Peng, S., Adapted solution of a backward stochastic differential equation, Systems Control Lett., 14, 55-61 (1990) · Zbl 0692.93064 [25] Pardoux, E.; Peng, S., Backward stochastic differential equations and quasilinear parabolic partial differential equations, (Rozovskii, B. L.; Sowers, R. B., Stochastic Partial Differential Equations. Stochastic Partial Differential Equations, Lecture Notes in Control and Inform. Sci., vol. 176 (1992), Springer: Springer Berlin), 200-217 · Zbl 0766.60079 [26] Pardoux, E.; Peng, S., Backward doubly stochastic differential equations and systems of quasilinear SPDEs, Probab. Theory Related Fields, 98, 209-227 (1994) · Zbl 0792.60050 [27] Peng, S., Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stochastics, 37, 61-74 (1991) · Zbl 0739.60060 [28] Ruelle, D., Characteristic exponents and invariant manifolds in Hilbert space, Ann. of Math. (2), 115, 243-290 (1982) · Zbl 0493.58015 [29] Sinai, Ya., Two results concerning asymptotic behaviour of solutions of Burgers equation with force, J. Statist. Phys., 64, 1-12 (1991) · Zbl 0978.35500 [30] Sinai, Ya., Burgers system driven by a periodic stochastic flows, (Itô’s Stochastic Calculus and Probability Theory (1996), Springer: Springer Tokyo), 347-353 · Zbl 0866.35148 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.