Bildhauer, Michael; Fuchs, Martin; Repin, Sergey A functional type a posteriori error analysis for the Ramberg-Osgood model. (English) Zbl 1128.74006 ZAMM, Z. Angew. Math. Mech. 87, No. 11-12, 860-876 (2007). Summary: We discuss the weak form of Ramberg-Osgood equations (also known as Norton-Hoff model) for nonlinear elastic materials and prove functional type a posteriori error estimates for the difference of the exact stress tensor and any tensor from the admissible function space. These equations are of great importance since they can be used as an approximation for elastic-perfectly plastic Hencky materials. Cited in 2 Documents MSC: 74B20 Nonlinear elasticity 74G45 Bounds for solutions of equilibrium problems in solid mechanics 74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials) 35Q72 Other PDE from mechanics (MSC2000) Keywords:Norton-Hoff model; variational methods; elastic-perfectly plastic Hencky materials PDF BibTeX XML Cite \textit{M. Bildhauer} et al., ZAMM, Z. Angew. Math. Mech. 87, No. 11--12, 860--876 (2007; Zbl 1128.74006) Full Text: DOI OpenURL References: [1] Sobolev spaces (Academic Press, New York, San Francisco, London, 1975). · Zbl 0314.46030 [2] and , A posteriori error estimation in finite element analysis (Wiley and Sons, New York, 2000). [3] Ainsworth, Num. Meth. for PDE 9 pp 23– (1993) [4] and , Adaptive finite element methods for differential equations (Birkhäuser, Berlin, 2003). [5] Becker, East-West J. Num. Math. 4 pp 237– (1996) [6] and , Asymptotic behaviour of Norton-Hoff’s law in plasticity theory and H1 regularity. In: Boundary Value Problems for Partial Differential Equations and Applications, edited by J.L. Lions and C. Baiocchi, no. 29 in Research Notes in Applied Mathematics. Masson, Paris, 1993, pp. 3–26. [7] Bildhauer, Z. Angew. Math. Mech. 87 pp 70– (2007) [8] and , Continuity properties of the stress tensor in the 3-dimensional Ramberg/Osgood model, J. Appl. Anal. 13, in press (2007). · Zbl 1134.74008 [9] Bildhauer, Zap. Nauch. Semi. (POMI) 336 pp 5– (2006) [10] Bildhauer, J. Non-Newtonian Fluid Mech. 142 pp 112– (2007) [11] Braess, Num. Math. 101 pp 415– (2005) [12] Carstensen, SIAM J. Numer. Anal. 43 pp 2294– (2006) [13] Clarkson, Trans. Am. Math. Soc. 40 pp 396– (1936) [14] Chen, Num. Math 84 pp 527– (2000) [15] Fuchs, Math. Meth. Appl. Sci. (M2AS) 29 pp 2225– (2006) [16] and , Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Lecture Notes in Mathematics 1749 (Springer, Berlin, Heidelberg, 2000). [17] Geymonat, Math. Meth. Appl. Sci. 8 pp 206– (1986) [18] Hoppe, SIAM J. Num. Anal. 31 pp 301– (1994) [19] Regularity results for quasilinear elliptic systems of power-law growth in nonsmooth domains – boundary, transmission and crack problems, Dissertation, Fakultät Mathematik und Physik, Universität Stuttgart, 2004. [20] and , Mechanics of rigid plastic media, Nauka, Moscow (1981) (in Russian). [21] Mosolov, Mat. Sbornik 88 (130) pp 256– (1972) [22] and , Reliable methods for computer simulation, error control and a posteriori estimates (Elsevier, New York, 2004). [23] and , Description of stress-strain curves by three parameters, NACA Technical Note 902, National Bureau of Standards, Washington, 1943. [24] Pousin, C. R. Acad. Sci. Paris 312 pp 699– (1991) [25] Prager, Quart. Appl. Math. 5 pp 241– (1947) [26] The dual-weighted-residual method for error control and mesh adaption in finite element methods. The mathematics of finite elements and applications X, MAFELAP 1999, Proceedings of the 10th conference, Brunel Univ., Uxbridge, Middlesex, GB, June 22–25, 1999, edited by J. Whiteman (Elsevier, Amsterdam, 2000), pp. 97–116. [27] Repin, Zap. Nauch. Sem. (POMI) 243 pp 201– (1997) [28] Repin, Math. Comp. 69 pp 481– (2000) [29] Two-sided estimates of deviation from exact solutions of uniformly elliptic equations, Proc. St. Petersburg Math. Soc. IX (2001), pp. 143-171. Translation: Amer. Math. Soc. Tansl. Ser. 2, 209 (Amer. Math. Soc., Providence, RI, 2003). [30] Repin, Algebra i Analiz 16 pp 124– (2004) [31] Repin, Algebra i Analiz 11 pp 151– (1999) [32] Repin, Comp. Meth. Appl. Math. Eng. 138 pp 317– (1996) [33] and , A general approach to a posteriori error estimates for strictly monotone and Lipschitz continuous nonlinear operators illustrated in elasto-plasticity, Proc. 2nd European Conf. Num. Math. Advanced Appl 1997 (Heidelberg) (World Sci. Publ., River Edge, New York, 1998), pp. 572–579. · Zbl 1075.65519 [34] Schulz, Math. Comp. 62 pp 445– (1994) [35] and , A review of a posteriori error estimation and adaptive mesh-refinement techniques (Wiley and Sons, Teubner, New York, 1996). · Zbl 0853.65108 [36] Mathematical problems in plasticity (Gauthier-Villars, Paris, 1985). [37] A review of a posteriori error estimation and adaptive mesh-refinement techniques (Wiley and Sons, Teubner, New York 1996). · Zbl 0853.65108 [38] Verfürth, Math. Comput. 62 pp 445– (1994) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.