## A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch zeta function.(English)Zbl 1130.30003

The authors introduce and investigate a new class of analytic functions defined by the convolution operator $$J_{s, b}(f)$$ introduced by the second author and A. A. Attiya in [Integral Transforms Spec. Funct. 18, No. 3, 207–216 (2007; Zbl 1112.30007)]. Let $$\mathcal A$$ denote the class of functions $f(z)=z+\sum_{k=2}^\infty a_kz^k$ analytic in $$\mathbb U=\{z\in\mathbb C: | z| <1\}$$. For $$0\leq \alpha<1$$, define $$S^*(\alpha)=\left\{f\in{\mathcal A}: \operatorname{Re}\left( {zf'(z)\over f(z)}\right)>\alpha \right\}$$. Let, for $$z\in\mathbb U$$, $G_{s, b}(z)=(1+b)^s\left(\Phi(z, s, b)-b^{-s}\right),$ where $$\Phi(z, s, a)$$ is the Hurwitz-Lerch zeta-function defined, for $$a\in\mathbb C \setminus\mathbb Z_0^{-}$$ and $$s\in\mathbb C$$ if $$| z| <1$$ and $$\operatorname{Re}(s)>$$1 if $$| z| =1$$, by $\Phi(z, s, a)=\sum_{n=0}^\infty {z^n\over (n+a)^s}.$ Then the operator $$J_{s, b}(f)(z): {\mathcal A} \to{\mathcal A}$$ is given by $J_{s, b}(f)(z)=G_{s, b}(z)*f(z).$ More precisely, the authors introduce and study the class $S_{s, b}^*(\alpha)=\left\{f\in{\mathcal A}: J_{s, b}(f)\in S^*(\alpha)\right\},$ and for the functions of this class they obtain coefficient inequalities, prove distortion inequalities, study extreme points and the Fekete-Szegö inequality. For example, for $$n\in\mathbb N\setminus\{1\}$$, $$\alpha\in[0, 1)$$, $| a_n| \leq {2(1-\alpha)\over n-1}\left| \left({n+b\over 1+b}\right)^s\right| \prod_{j=2}^{n-1}\left( 1+{2(1-\alpha)\over j-1}\right).$

### MSC:

 30C10 Polynomials and rational functions of one complex variable 11M35 Hurwitz and Lerch zeta functions

Zbl 1112.30007
Full Text:

### References:

 [1] Srivastava H. M., Series Associated with the Zeta and Related Functions (2001) · Zbl 1014.33001 [2] DOI: 10.1016/j.amc.2004.12.004 · Zbl 1082.11052 [3] DOI: 10.1016/j.jmaa.2004.05.040 · Zbl 1106.11034 [4] DOI: 10.1080/10652460600926907 · Zbl 1184.11005 [5] DOI: 10.1016/S0096-3003(03)00746-X · Zbl 1078.11054 [6] DOI: 10.1080/10652460600926923 · Zbl 1172.11026 [7] DOI: 10.1016/j.jmaa.2005.01.020 · Zbl 1076.33006 [8] DOI: 10.1080/10652460701208577 · Zbl 1112.30007 [9] DOI: 10.2307/2007212 · JFM 45.0672.02 [10] DOI: 10.1090/S0002-9939-1965-0178131-2 [11] DOI: 10.1090/S0002-9947-1969-0232920-2 [12] DOI: 10.1006/jmaa.1993.1204 · Zbl 0774.30008 [13] Duren P. L., Univalent Functions Grundlehren der Mathematischen Wissenschaften (1983) [14] Ma, W. and Minda, D. A unified treatment of some special classes of univalent functions. Proceedings of the Conference on Complex Analysis. Edited by: Li, Z., Ren, F., Yang, L. and Zhang, S. pp.157–169. Cambridge, Massachusetts: International Press. · Zbl 0823.30007 [15] Srivastava H. M., Complex Variables Theory and Application 44 pp 145– (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.