×

Compactness results in symplectic field theory. (English) Zbl 1131.53312

Summary: This is one in a series of papers devoted to the foundations of symplectic field theory sketched in [Y. Eliashberg, A. Givental and H. Hofer, Introduction to Symplectic Field Theory, Part II, Basel: Birkhäuser, 560–673 (2000; Zbl 0989.81114)]. We prove compactness results for moduli spaces of holomorphic curves arising in symplectic field theory. The theorems generalize Gromov’s compactness theorem in [M. Gromov, Invent. Math. 82, 307–347 (1985; Zbl 0952.53025)] as well as compactness theorems in Floer homology theory, [A. Floer, Commun. Pure Appl. Math. 41, 775–813 (1988; Zbl 0633.53058) and J. Differ. Geom. 28, 513–547 (1988; Zbl 0674.57027)], and in contact geometry, [H. Hofer, Invent. Math. 114, 515–563 (1993; Zbl 0797.58023) and H. Hofer, K. Wysocki and E. Zehnder, Ann. Math. (2) 157, 125–255 (2003; Zbl 1215.53076)].

MSC:

53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
53D35 Global theory of symplectic and contact manifolds
53D40 Symplectic aspects of Floer homology and cohomology
57R17 Symplectic and contact topology in high or arbitrary dimension

References:

[1] F Bourgeois, A Morse-Bott approach to contact homology, Fields Inst. Commun. 35, Amer. Math. Soc. (2003) 55 · Zbl 1046.57017
[2] P Deligne, D Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969) 75 · Zbl 0181.48803 · doi:10.1007/BF02684599
[3] T Ekholm, J Etnyre, M Sullivan, Legendrian submanifolds in \(\mathbbR^{2n+1}\) and contact homology, · Zbl 1098.57013
[4] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560 · Zbl 0989.81114
[5] Y Eliashberg, H Hofer, D Salamon, Lagrangian intersections in contact geometry, Geom. Funct. Anal. 5 (1995) 244 · Zbl 0844.58038 · doi:10.1007/BF01895668
[6] A Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988) 775 · Zbl 0633.53058 · doi:10.1002/cpa.3160410603
[7] A Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513 · Zbl 0674.57027
[8] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 · Zbl 0592.53025 · doi:10.1007/BF01388806
[9] H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515 · Zbl 0797.58023 · doi:10.1007/BF01232679
[10] H Hofer, C Viterbo, The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math. 45 (1992) 583 · Zbl 0773.58021 · doi:10.1002/cpa.3160450504
[11] H Hofer, E Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag (1994) · Zbl 0837.58013
[12] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations I: Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337 · Zbl 0861.58018
[13] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisation IV: Asymptotics with degeneracies, Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 78 · Zbl 0868.53043
[14] H Hofer, K Wysocki, E Zehnder, Correction to: “Properties of pseudoholomorphic curves in symplectisations I: Asymptotics”, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 535 · Zbl 0861.58018 · doi:10.1016/S0294-1449(98)80034-6
[15] H Hofer, K Wysocki, E Zehnder, The dynamics on three-dimensional strictly convex energy surfaces, Ann. of Math. \((2)\) 148 (1998) 197 · Zbl 0944.37031 · doi:10.2307/120994
[16] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectizations III: Fredholm theory, Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser (1999) 381 · Zbl 0924.58003
[17] H Hofer, K Wysocki, E Zehnder, The asymptotic behavior of a finite energy plane, preprint, ETHZ (2001) 1 · Zbl 1041.57009
[18] H Hofer, K Wysocki, E Zehnder, Finite energy cylinders of small area, Ergodic Theory Dynam. Systems 22 (2002) 1451 · Zbl 1041.57009 · doi:10.1017/S0143385702001013
[19] H Hofer, K Wysocki, E Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. \((2)\) 157 (2003) 125 · Zbl 1215.53076 · doi:10.4007/annals.2003.157.125
[20] C Hummel, Gromov’s compactness theorem for pseudo-holomorphic curves, Progress in Mathematics 151, Birkhäuser Verlag (1997) · Zbl 0870.53002
[21] E N Ionel, T H Parker, Relative Gromov-Witten invariants, Ann. of Math. \((2)\) 157 (2003) 45 · Zbl 1039.53101 · doi:10.4007/annals.2003.157.45
[22] E N Ionel, T H Parker, The symplectic sum formula for Gromov-Witten invariants, Ann. of Math. \((2)\) 159 (2004) 935 · Zbl 1075.53092 · doi:10.4007/annals.2004.159.935
[23] A M Li, Y Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math. 145 (2001) 151 · Zbl 1062.53073 · doi:10.1007/s002220100146
[24] J Li, A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002) 199 · Zbl 1063.14069
[25] M P Muller, Gromov’s Schwarz lemma as an estimate of the gradient for holomorphic curves, Progr. Math. 117, Birkhäuser (1994) 217
[26] D McDuff, D Salamon, Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1998) · Zbl 0844.58029
[27] D McDuff, D Salamon, \(J\)-holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994) · Zbl 0809.53002
[28] S Wolpert, On the Weil-Petersson geometry of the moduli space of curves, Amer. J. Math. 107 (1985) 969 · Zbl 0578.32039 · doi:10.2307/2374363
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.