×

On chaos synchronization of fractional differential equations. (English) Zbl 1132.37308

Summary: A simple but efficient method for chaos synchronization of fractional differential systems is proposed, which is based upon the stability criterion of linear fractional differential systems. Using this new method, chaos synchronization for fractional Lorenz, Rössler, and Chen systems are implemented.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
26A33 Fractional derivatives and integrals
34D20 Stability of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Oustlaoup A, Systèms asservis d’ ordre fractionnaire (Éditions Masson, 1983).; Oustlaoup A, Systèms asservis d’ ordre fractionnaire (Éditions Masson, 1983).
[2] Ross, B., Fractional calculus and its applications, (Proc Int Conf New Haven, June. Proc Int Conf New Haven, June, Lecture notes in mathematics (1974), Springer-Verlag) · Zbl 0293.00010
[3] Bagley, R. L.; Calico, R. A., J Guid Control Dyn, 14, 304 (1991)
[4] Koeller, R. C., J Appl Mech, 51, 299 (1984) · Zbl 0544.73052
[5] Koeller, R. C., Acta Polytech Scand, Mech Eng Ser, 58, 251 (1986) · Zbl 0578.73040
[6] Sun, H. H.; Abdelwahad, A. A.; Onaral, B., IEEE Trans Auto Control, 29, 441 (1984) · Zbl 0532.93025
[7] Ichise, M.; Nagayanagi, Y.; Kojima, T., Electroanal J Chem Interfacial Electrochem, 33, 253 (1971)
[8] Heaviside, O., Electromagnetic theory (1971), Chelsea: Chelsea New York
[9] Hartley, T. T.; Lorenzo, C. F.; Qammer, H. K., IEEE Trans Circuits Syst I, 42, 485 (1995)
[10] Arena P, Caponetto R, Fortuna L, Porto D, In: Proceedings of ECCTD, Technical University of Budapest, Budapest, September, vol. 1259, 1997.; Arena P, Caponetto R, Fortuna L, Porto D, In: Proceedings of ECCTD, Technical University of Budapest, Budapest, September, vol. 1259, 1997. · Zbl 0936.92006
[11] Grigorenko, I.; Grigorenko, E., Phys Rev Lett, 91, 034101 (2003)
[12] Li, C. G.; Chen, G., Physica A, 341, 55 (2004)
[13] Li, C. P.; Peng, G. J., Chaos, Solitons & Fractals, 22, 443 (2004) · Zbl 1060.37026
[14] Li, C. G.; Chen, G., Chaos, Solitons & Fractals, 22, 549 (2004) · Zbl 1069.37025
[15] Pecora, L. M.; Carroll, T. L., Phys Rev Lett, 64, 821 (1990) · Zbl 0938.37019
[16] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D. L.; Zhou, C. S., Phys Rep, 366, 1 (2002) · Zbl 0995.37022
[17] González-Miranda, J. M., Phys Rev E, 53, R5-R8 (1996)
[18] Mainieri, R.; Rehacek, J., Phys Rev Lett, 82, 3042 (1999)
[19] Yan, J. P.; Li, C. P., Chaos, Solitons & Fractals, 23, 1683 (2005) · Zbl 1068.94535
[20] Lu, J. G., Chaos, Solitons & Fractals, 27, 519 (2006) · Zbl 1086.94007
[21] Matignon D. Stability results of fractional differential equations with applications to control processing. In: IMACS, IEEE-SMC, Lille, France, 963, 1996.; Matignon D. Stability results of fractional differential equations with applications to control processing. In: IMACS, IEEE-SMC, Lille, France, 963, 1996.
[22] Caputo, M., The Geophys J Roy Astronom Soc, 13, 529 (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.