Equilibrium problems with complementarity constraints: case study with applications to oligopolistic markets. (English) Zbl 1132.91342

Summary: The article concerns a rather new class of hierarchical games called equilibrium problems with equilibrium constraints (EPECs), or more precisely, in our setting, equilibrium problems with complementarity constraints (EPCCs). Among others, via EPECs and EPCCs, one can model a hierarchical oligopolistic market with more than one “Leader”. In the article, we investigate the case when the Leaders cooperate, and we assume that the behaviour of the “Followers” is described by a mixed complementarity problem. Using advanced tools of modern variational analysis and generalized differentiation, we derive new necessary optimality conditions and propose a numerical method to solve the class of EPCCs under consideration. The results obtained are applied to an oligopolistic market model which primarily motivates this research.


91A12 Cooperative games
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
Full Text: DOI


[1] DOI: 10.1007/978-3-662-02959-6 · doi:10.1007/978-3-662-02959-6
[2] Červinka M, WDS’04 Proceedings of Contributed Papers pp 58– (2004)
[3] Clarke FH, Optimization and Nonsmooth Analysis (1983)
[4] DOI: 10.1007/BF01585696 · Zbl 0756.90081 · doi:10.1007/BF01585696
[5] DOI: 10.1137/S1052623401395553 · Zbl 1028.49018 · doi:10.1137/S1052623401395553
[6] DOI: 10.1007/s10107-005-0623-2 · Zbl 1093.90058 · doi:10.1007/s10107-005-0623-2
[7] Hu X, Judge Institute of Management (2004)
[8] DOI: 10.1017/CBO9780511983658 · doi:10.1017/CBO9780511983658
[9] DOI: 10.1016/j.ejor.2004.07.052 · Zbl 1091.90071 · doi:10.1016/j.ejor.2004.07.052
[10] DOI: 10.1006/jmaa.1994.1144 · Zbl 0807.49016 · doi:10.1006/jmaa.1994.1144
[11] DOI: 10.1080/1055678042000218966 · Zbl 1168.90624 · doi:10.1080/1055678042000218966
[12] Mordukhovich BS, Variational Analysis and Generalized Differentiation. Vol. 1: Basic Theory, Vol. 2: Applications (2005)
[13] DOI: 10.1007/BF01585096 · Zbl 0486.90015 · doi:10.1007/BF01585096
[14] DOI: 10.1007/BF01585759 · Zbl 0835.90093 · doi:10.1007/BF01585759
[15] DOI: 10.1007/978-1-4757-2825-5 · doi:10.1007/978-1-4757-2825-5
[16] DOI: 10.1287/moor.24.3.627 · Zbl 1039.90088 · doi:10.1287/moor.24.3.627
[17] Outrata JV, Kybernetika 40 pp 585– (2004)
[18] DOI: 10.1287/moor.5.1.43 · Zbl 0437.90094 · doi:10.1287/moor.5.1.43
[19] DOI: 10.1007/978-3-642-02431-3 · Zbl 0888.49001 · doi:10.1007/978-3-642-02431-3
[20] Scholtes , S . 2002. On the existence and computation of EPEC solutions, a talk given at the ICCP Conference in Cambridge, July2002.
[21] DOI: 10.1007/s10107-002-0365-3 · Zbl 1041.90052 · doi:10.1007/s10107-002-0365-3
[22] von Stackelberg H, Marktform und Gleichgewicht (1934)
[23] Su C-L, A sequential NCP algorithm for solving equilibrium problems with equilibrium constraints (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.