Best approximation in the supremum norm by analytic and harmonic functions. (English) Zbl 1134.41320


41A30 Approximation by other special function classes
30E10 Approximation in the complex plane
41A50 Best approximation, Chebyshev systems
41A52 Uniqueness of best approximation
Full Text: DOI


[1] Bonsall, F., Domination of the supremum of a harmonic function by its supremum over a countable set,Proc. Edinburgh Math. Soc. 30 (1987), 471–477. · Zbl 0658.31001
[2] Bonsall, F. andWalsh, D., Vanishingp-sums of the Poisson kernel and sums with positive coefficients,Proc. Edinburgh Math. Soc. 32 (1989), 431–447. · Zbl 0696.31004
[3] Brelot, M., Sur l’approximation et la convergence dans la théorie des fonctions harmoniques ou holomorphes,Bull. Soc. Math. France,73 (1945), 55–70. · Zbl 0061.22804
[4] Brown, L., Shields, A. andZeller, K., On absolutely convergent exponential sums,Trans. Amer. Math. Soc. 96 (1960), 162–183. · Zbl 0096.05103
[5] Deny, J., Systèmes totaux de fonctions harmoniques.Ann. Inst. Fourier (Grenoble) 1 (1949), 55–70.
[6] Dunford, N. andSchwartz, J.,Linear Operators. vol.1, Interscience, New York, 1958.
[7] Gamelin, T.,Uniform Algebras, 2nd ed., Chelsea, New York, 1984. · Zbl 0213.40401
[8] Garnett, J.,Bounded Analytic Functions, Academic Press, Orlando, Fla., 1981. · Zbl 0469.30024
[9] Hayman, W., Kershaw, D. andLyons, T., The best harmonic approximant to a continuous function, inAnniversary Volume on Approximation Theory and Functional Analysis (Oberwolfach, 1983) (Butzer, P. L., Stens, R. L. and Sz.-Nagy, B., eds.), pp. 317–327, Birkhäuser, Basel-Boston, 1984.
[10] Hintzman, W., Best uniform approximation via annihilating measures,Bull. Amer. Math. Soc. 76 (1970), 1062–1066. · Zbl 0231.46055
[11] Hintzman, W., On the existence of best analytic approximation,J. Approx. Theory 14 (1975), 20–22. · Zbl 0303.30030
[12] Khavinson, D., McCarthy, J. andShapiro, H. S., Best approximation in the mean by analytic and harmonic functions, to appear inIndiana Univ. Math. J.
[13] Khavinson, S. Ya., Foundations of the theory of extremal problems and their various generalizations for bounded analytic functions and various generalizations of them,Moskov. Inzh.-Stroit. Inst., Moscow. 1981 (Russian). English transl.: inExtremal Problems in Complex Analysis. Amer. Math. Soc. Transl.129, pp. 1–56, Amer. Math. Soc., Providence, R. I., 1986.
[14] Khavinson, S. Ya., Foundations of the theory of extremal problems for bounded analytic functions with additional constraints,Moskov. Inzh.-Stroit. Inst., Moscow, 1981 (Russian). English transl.: inExtremal Problems in Complex Analysis, Amer. Math. Soc. Transl.129, pp. 63–114, Amer. Math. Soc., Providence, R. I., 1986.
[15] Landkof, N. S.,Foundations of Modern Potential Theory, Nauka, Moscow, 1966 (Russian). English transl.: Springer-Verlag, Berlin-Heidelberg, 1972. · Zbl 0253.31001
[16] Luecking, D., A function algebra approach to badly approximable functions,Ph. D. Thesis, University of Illinois at Urbana-Champaign, 1976.
[17] Luecking, D., On badly approximable functions and uniform algebra,J. Approx. Theory 22 (1978), 161–176. · Zbl 0378.41012
[18] Rivlin, T. J. andShapiro, H. S., A unified approach to certain problems of approximation and minimization,J. SIAM 9 (1961), 670–699. · Zbl 0111.06103
[19] Rogosinski, W. andShapiro, H. S., On certain extremal problems for analytic functions,Acta Math. 90 (1953), 287–318. · Zbl 0051.05604
[20] Romanova, Z. S., On approximation by elements of convex sets inC(Q), Litovsk. Mat. Sb. 13:3 (1973), 183–190, 237 (Russian). English transl.:Lithuanian Math. Trans. 13 (1973), 481–486. · Zbl 0272.41017
[21] Romanova, Z. S., On approximation of bounded functions by analytic functions in the unit disk,Dept. of Mathematics report, pp. 22–34, Moscow Institute of Civil Engineering, 1977.
[22] Shapiro, H. S.,Topics in Approximation Theory, Lecture Notes in Math.187, Springer-Verlag, Berlin-Heidelberg, 1971. · Zbl 0213.08501
[23] Singer, I.,Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Editura Acad. Rep. Soc. România, Bucharest, 1967 (Romanian). English transl.: Springer-Verlag, Berlin-Heidelberg, 1970.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.