An exact and explicit solution for the valuation of American put options. (English) Zbl 1136.91468

Summary: An exact and explicit solution of the well-known Black-Scholes equation for the valuation of American put options is presented for the first time. To the best of the author’s knowledge, a closed-form analytical formula has never been found for the valuation of American options of finite maturity, although there have been quite a few approximate solutions and numerical approaches proposed. The closed-form exact solution presented here is written in the form of a Taylor’s series expansion, which contains infinitely many terms. However, only about 30 terms are actually needed to generate a convergent numerical solution if the solution of the corresponding European option is taken as the initial guess of the solution series. The optimal exercise boundary, which is the main difficulty of the problem, is found as an explicit function of the risk-free interest rate, the volatility and the time to expiration. A key feature of our solution procedure, which is based on the homotopy-analysis method, is the optimal exercise boundary being elegantly and temporarily removed in the solution process of each order, and, consequently, the solution of a linear problem can be analytically worked out at each order, resulting in a completely analytical and exact series-expansion solution for the optimal exercise boundary and the option price of American put options.


91G20 Derivative securities (option pricing, hedging, etc.)
Full Text: DOI


[1] Allegretto W, Discr. Contin. Dyn. Syst., Ser. B., Applic. Algorithm 8 pp 127– (2001)
[2] DOI: 10.2307/2328254 · doi:10.2307/2328254
[3] DOI: 10.1086/260062 · Zbl 1092.91524 · doi:10.1086/260062
[4] DOI: 10.2307/2326779 · doi:10.2307/2326779
[5] DOI: 10.1093/rfs/9.4.1211 · doi:10.1093/rfs/9.4.1211
[6] DOI: 10.1111/0022-1082.00289 · doi:10.1111/0022-1082.00289
[7] DOI: 10.1093/rfs/11.3.597 · Zbl 1386.91134 · doi:10.1093/rfs/11.3.597
[8] Carr, P and Faguet, D. 1994. Fast accurate valuation of American options. 1994. Cornell University working paper,
[9] DOI: 10.1111/j.1467-9965.1992.tb00040.x · Zbl 0900.90004 · doi:10.1111/j.1467-9965.1992.tb00040.x
[10] Carslaw HS, Conduction of Heat in Solids (1959)
[11] DOI: 10.1016/0304-405X(79)90015-1 · Zbl 1131.91333 · doi:10.1016/0304-405X(79)90015-1
[12] Dold A, Lectures on Algebraic Topology (1972)
[13] DOI: 10.2307/2327741 · doi:10.2307/2327741
[14] Grant D, J. Finan. Engng 5 pp 211– (1996)
[15] DOI: 10.1111/1467-9965.00109 · Zbl 1049.91071 · doi:10.1111/1467-9965.00109
[16] Hildebrand FB, Advanced Calculus and Applications (1976)
[17] Hon YC, J. Finan. Engng 8 pp 31– (1997)
[18] DOI: 10.1093/rfs/9.1.277 · doi:10.1093/rfs/9.1.277
[19] DOI: 10.1111/j.1467-9965.1991.tb00007.x · Zbl 0900.90109 · doi:10.1111/j.1467-9965.1991.tb00007.x
[20] DOI: 10.2307/2330809 · doi:10.2307/2330809
[21] DOI: 10.1093/rfs/11.3.627 · doi:10.1093/rfs/11.3.627
[22] DOI: 10.1093/rfs/3.4.547 · doi:10.1093/rfs/3.4.547
[23] DOI: 10.1007/s004660050273 · Zbl 0923.73076 · doi:10.1007/s004660050273
[24] DOI: 10.1017/S0022112001007169 · Zbl 1007.76014 · doi:10.1017/S0022112001007169
[25] DOI: 10.1002/(SICI)1097-0363(19960115)22:1<1::AID-FLD314>3.0.CO;2-5 · Zbl 0873.76052 · doi:10.1002/(SICI)1097-0363(19960115)22:1<1::AID-FLD314>3.0.CO;2-5
[26] Liao S-J, Bound. Elem. Technol. pp 407– (1999)
[27] DOI: 10.1093/rfs/14.1.113 · Zbl 1386.91144 · doi:10.1093/rfs/14.1.113
[28] MacMillan L, Adv. Fut. Opt. Res. 1 pp 119– (1986)
[29] McKean HP, Ind. Mgmt Rev. 6 pp 32– (1965)
[30] DOI: 10.2307/3003143 · doi:10.2307/3003143
[31] Ortega, JM and Rheinboldt, WC. 1970.Iterative Solution of Nonlinear Equations in Several Variables, 230–234. New York: Academic Press.
[32] Samuelson PA, Ind. Mgmt Rev. 6 pp 13– (1965)
[33] DOI: 10.1016/0304-405X(77)90037-X · doi:10.1016/0304-405X(77)90037-X
[34] DOI: 10.1093/qjmam/36.4.487 · Zbl 0522.73100 · doi:10.1093/qjmam/36.4.487
[35] Tavella, D and Randall, C. 2000.Pricing Financial Instruments, The Finite Difference Method, 88New York: Wiley.
[36] Wall, CTC. 1972.A Geometric Introduction to Topology, 57Reading, MA: Addison-Wesley.
[37] Wilmott, P, Howison, S and Dewynne, J. 1995.The Mathematics of Financial Derivatives, 78 and 108Cambridge: Cambridge University Press. · Zbl 0842.90008
[38] Wu L, J. Finan. Engng 6 pp 83– (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.