×

Asymptotics and zeros of Sobolev orthogonal polynomials on unbounded supports. (English) Zbl 1137.42312

Summary: We present a survey about analytic properties of polynomials orthogonal with respect to a weighted Sobolev inner product such that the vector of measures has an unbounded support. In particular, we focus on the asymptotic behaviour of such polynomials as well as in the distribution of their zeros. Some open problems as well as some directions for future research are formulated.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

References:

[1] Alfaro, M., López, G., Rezola, M.L.: Some properties of zeros of Sobolev-type orthogonal polynomials. J. Comput. Appl. Math. 69, 171–179 (1996) · Zbl 0862.33005 · doi:10.1016/0377-0427(95)00034-8
[2] Alfaro, M., Martínez-Finkelshtein, A., Rezola, M.L.: Asymptotics properties of balanced extremal Sobolev polynomials: coherent case. J. Approx. Theory 100, 44–59 (1999) · Zbl 0942.42015 · doi:10.1006/jath.1998.3336
[3] Alfaro, M., Moreno-Balcázar, J.J., Peña, A., Rezola, M.L.: Sobolev orthogonal polynomials: how to balance and asymptotics (submitted for publication). · Zbl 1158.33005
[4] Alfaro, M., Moreno-Balcázar, J.J., Pérez, T.E., Piñar, M.A., Rezola, M.L.: Asymptotics of Sobolev orthogonal polynomials for Hermite coherent pairs. J. Comput. Appl. Math. 133, 141–150 (2001) · Zbl 0990.42011 · doi:10.1016/S0377-0427(00)00639-7
[5] Alfaro, M., Moreno-Balcázar, J.J., Rezola, M.L.: Laguerre–Sobolev orthogonal polynomials: asymptotics for coherent pairs of type II. J. Approx. Theory 122, 79–96 (2003) · Zbl 1031.42024 · doi:10.1016/S0021-9045(03)00034-0
[6] Alvarez-Nodarse, R., Moreno–Balcázar, J.J.: Asymptotic properties of generalized Laguerre orthogonal polynomials. Indag. Math. (N.S.) 15, 151–165 (2004) · Zbl 1064.41022 · doi:10.1016/S0019-3577(04)90012-2
[7] Andrews, G.E., Askey, R.: Classical orthogonal polynomials. In: Brezinski, C. et al. (eds.) Polynômes Orthogonaux et Applications, Lecture Notes in Mathematics, vol. 1171, pp. 36–62. Springer, Berlin Heidelberg New York (1985) · Zbl 0596.33016
[8] Area, I., Godoy, E., Marcellán, F.: Classification of all {\(\Delta\)}-coherent pairs. Integral Transform. Spec. Funct. 9(1), 1–18 (2000) · Zbl 0972.42017 · doi:10.1080/10652460008819238
[9] Area, I., Godoy, E., Marcellán, F., Moreno–Balcázar, J.J.: {\(\Delta\)}-Sobolev orthogonal polynomials of Meixner type: asymptotics and limit relation. J. Comput. Appl. Math. 178, 21–36 (2005) · Zbl 1060.42015 · doi:10.1016/j.cam.2004.08.008
[10] Cachafeiro, A., Marcellán, F., Moreno-Balcázar, J.J.: On asymptotic properties of Freud–Sobolev orthogonal polynomials. J. Approx. Theory 125, 26–41 (2003) · Zbl 1043.33005 · doi:10.1016/j.jat.2003.09.003
[11] Castaño-García, L., Moreno–Balcázar, J.J.: A Mehler–Heine type formula for Hermite–Sobolev orthogonal polynomials. J. Comput. Appl. Math. 150, 25–35 (2003) · Zbl 1012.42020 · doi:10.1016/S0377-0427(02)00552-6
[12] de Bruin, M.G., Groenevelt, W.G.M., Marcellán, F., Meijer, H.G., Moreno–Balcázar, J.J.: Asymptotics and zeros of symmetrically coherent pairs of Hermite type (submitted for publication). · Zbl 1214.42053
[13] de Bruin, M.G., Groenevelt, W.G.M., Meijer, H.G.: Zeros of Sobolev orthogonal polynomials of Hermite type. Appl. Math. Comput. 132, 135–166 (2002) · Zbl 1024.33004 · doi:10.1016/S0096-3003(01)00183-7
[14] Ditzian, Z., Lubinsky, D.S.: Jackson and smoothness theorems for Freud weights in L p (0 < p . Constr. Approx. 13, 99–152 (1997) · Zbl 0867.41010
[15] Gautschi, W., Kuijlaars, A.B.J.: Zeros and critical points of Sobolev orthogonal polynomials. J. Approx. Theory 91, 117–137 (1997) · Zbl 0897.42014 · doi:10.1006/jath.1996.3097
[16] Iserles, A., Koch, P.E., Nørsett, S.P., Sanz–Serna, J.M.: Orthogonality and approximation in a Sobolev space. In: Mason, J.C., Cox, M.G. (eds.) Algorithms for Approximation, pp. 117–124. Chapman & Hall, London, UK (1990) · Zbl 0749.41030
[17] Iserles, A., Koch, P.E., Nørsett, S.P., Sanz–Serna, J.M.: On polynomials orthogonal with respect to certain Sobolev inner products. J. Approx. Theory 65, 151–175 (1991) · Zbl 0734.42016 · doi:10.1016/0021-9045(91)90100-O
[18] Geronimo, J.S., Lubinsky, D.S., Marcellán, F.: Asymptotics for Sobolev orthogonal polynomials for exponential weights. Constr. Approx. 22, 309–346 (2005) · Zbl 1105.42016 · doi:10.1007/s00365-004-0578-1
[19] Geronimo, J.S., Van Assche, W.: Relative asymptotics for orthogonal polynomials with unbounded recurrence coefficients. J. Approx. Theory 62, 47–69 (1990) · Zbl 0705.42018 · doi:10.1016/0021-9045(90)90046-S
[20] Koekoek, R., Meijer, H.G.: A generalization of Laguerre polynomials. SIAM J. Math. Anal. 24(3), 768–782 (1993) · Zbl 0780.33007 · doi:10.1137/0524047
[21] Levin, E., Lubinsky, D.S.: Orthogonal Polynomials for Exponential Weights. Springer, Berlin Heidelberg New York (2001) · Zbl 0997.42011
[22] Lewis, D.C.: Polynomial least square approximations. Amer. J. Math. 69, 273–278 (1947) · Zbl 0033.35603 · doi:10.2307/2371851
[23] López-Lagomasino, G., Marcellán, F., Pijeira, H.: Logarithmic asymptotic of contracted Sobolev extremal polynomials on the real line. J. Approx. Theory (in press) · Zbl 1106.41031
[24] López-Lagomasino, G., Pijeira, H.: Zero location and n-th root asymptotics de Sobolev orthogonal polynomials. J. Approx. Theory 99, 30–43 (1999) · Zbl 0949.42020 · doi:10.1006/jath.1998.3318
[25] López-Lagomasino, G., Pijeira, H., Pérez, I.: Sobolev orthogonal polynomials in the complex plane. J. Comput. Appl. Math. 127, 219–230 (2001) · Zbl 0973.42015 · doi:10.1016/S0377-0427(00)00498-2
[26] Marcellán, F., Alfaro, M., Rezola, M.L.: Orthogonal polynomials on Sobolev spaces: old and new directions. J. Comput. Appl. Math. 48, 113–131 (1993) · Zbl 0790.42015 · doi:10.1016/0377-0427(93)90318-6
[27] Marcellán, F., Meijer, H.G., Pérez, T.E., Piñar, M.A.: An asymptotic result for Laguerre–Sobolev orthogonal polynomials. J. Comput. Appl. Math. 87, 87–94 (1997) · Zbl 0886.33008 · doi:10.1016/S0377-0427(97)00179-9
[28] Marcellán, F., Martínez-Finkelshtein, A., Moreno–Balcázar, J.J.: k-coherence of measures with non-classical weights. In: Español, L., Varona, J.L.(eds.) MargaritaMathematica en memoria de José Javier (Chicho) Guadalupe Hernández, pp. 77–83. Servicio de Publicaciones Universitario de La Rioja, Spain (2001) · Zbl 1253.42022
[29] Marcellán, F., Moreno-Balcázar, J.J.: Strong and Plancherel–Rotach asymptotics of nondiagonal Laguerre–Sobolev orthogonal polynomials. J. Approx. Theory 110, 54–73 (2001) · Zbl 0983.42013 · doi:10.1006/jath.2000.3530
[30] Marcellán, F., Ronveaux, A.: A bibliography of Sobolev orthogonal polynomials. Internal Report. Universidad Carlos III de Madrid, Spain (July 2005)
[31] Martínez-Finkelshtein, A.: Asymptotic properties of Sobolev orthogonal polynomials. J. Comput. Appl. Math. 99, 491–510 (1998) · Zbl 0933.42013 · doi:10.1016/S0377-0427(98)00179-4
[32] Martínez-Finkelshtein, A.: Analytic aspects of Sobolev orthogonal polynomials revisited. J. Comput. Appl. Math. 127, 255–266 (2001) · Zbl 0971.33004 · doi:10.1016/S0377-0427(00)00499-4
[33] Martínez-Finkelshtein, A., Moreno–Balcázar, J.J., Pérez, T.E., Piñar, M.A.: Asymptotics of Sobolev orthogonal polynomials for coherent pairs of measures. J. Approx. Theory 92, 280–293 (1998) · Zbl 0898.42006 · doi:10.1006/jath.1997.3123
[34] Meijer, H.G.: A short history of orthogonal polynomials in a Sobolev space. I. The. non-discrete case. Nieuw Arch. Wisk. 14, 93–112 (1996) · Zbl 0862.33001
[35] Meijer, H.G.: Determination of all coherent pairs. J. Approx. Theory 89, 321–343 (1997) · Zbl 0880.42012 · doi:10.1006/jath.1996.3062
[36] Meijer, H.G., de Bruin, M.G.: Zeros of Sobolev orthogonal polynomials following from coherent pairs. J. Comput. Appl. Math. 139, 253–274 (2002) · Zbl 1005.42015 · doi:10.1016/S0377-0427(01)00421-6
[37] Meijer, H.G., Pérez, T.E., Piñar, M.A.: Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Laguerre type. J. Math. Anal. Appl. 245, 528–546 (2000) · Zbl 0965.42017 · doi:10.1006/jmaa.2000.6779
[38] Mhaskar, H.N., Saff, E.B.: Extremal problems for polynomials with exponential weights. Trans. Amer. Math. Soc. 285, 204–234 (1984) · Zbl 0546.41014 · doi:10.1090/S0002-9947-1984-0748838-0
[39] Moreno-Balcázar, J.J.: Smallest zeros of some types of orthogonal polynomials: asymptotics. J. Comput. Appl. Math. 179, 289–301 (2005) · Zbl 1068.42023 · doi:10.1016/j.cam.2004.09.045
[40] Moreno-Balcázar, J.J.: A note on the zeros of Freud–Sobolev orthogonal polynomials. J. Comput. Appl. Math. (in press) · Zbl 1120.33009
[41] Pan, K.: On Sobolev orthogonal polynomials with coherent pairs: the Laguerre case, type I. J. Math. Anal. Appl. 223, 319–334 (1998) · Zbl 0913.42019 · doi:10.1006/jmaa.1998.5991
[42] Szego, G.: Orthogonal polynomials. Amer. Math. Soc. Colloq. Publ. 23, 4th edn. Amer. Math. Soc., Providence, Rhode Island (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.