Wu, Yuexiang New fixed point theorems and applications of mixed monotone operator. (English) Zbl 1137.47044 J. Math. Anal. Appl. 341, No. 2, 883-893 (2008). The author presents some new existence and uniqueness theorems for mixed monotone operators in partially ordered Banach spaces, without assuming operators to be continuous or compact. The results extend and improve recent related results. Examples illustrating the results are given. Reviewer: Sotiris K. Ntouyas (Ioannina) Cited in 33 Documents MSC: 47H10 Fixed-point theorems 47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces 47H05 Monotone operators and generalizations Keywords:mixed monotone operators; cone and semiorder; fixed point PDF BibTeX XML Cite \textit{Y. Wu}, J. Math. Anal. Appl. 341, No. 2, 883--893 (2008; Zbl 1137.47044) Full Text: DOI OpenURL References: [1] Guo, D.; Lakshmikantham, V., Coupled fixed points of nonlinear operators with applications, Nonlinear anal. theory methods appl., 11, 623-632, (1987) · Zbl 0635.47045 [2] Guo, D.; Lakshmikantham, V., Nonlinear problems in abstract cones, (1988), Academic Press New York · Zbl 0661.47045 [3] Guo, D., Existence and uniqueness of positive fixed point for mixed monotone operators with applications, Appl. anal., 46, 91-100, (1992) · Zbl 0792.47053 [4] Zhang, Z., New fixed point theorems of mixed monotone operators and applications, J. math. anal. appl., 204, 307-319, (1996) · Zbl 0880.47036 [5] Zhao, Z., Uniqueness and existence of fixed points on some mixed monotone mappings in ordered linear spaces, J. systems sci. math. sci., 19, 2, 217-224, (1999), (in Chinese) · Zbl 0951.47049 [6] Liang, Z.D.; Zhang, L.L.; Li, S.J., Fixed point theorems for a class of mixed monotone operators, J. anal. appl., 22, 3, 529-542, (2003) · Zbl 1065.47060 [7] Liu, J.; Li, F.; Lu, L., Fixed point and applications of mixed monotone operator with superlinear nonlinearity, Acta math. sci. ser. A, 23, 1, 19-24, (2003), (in Chinese) · Zbl 1027.47061 [8] Xu, S.; Jia, B., Fixed point theorems of φ concave-(−ψ) convex mixed monotone operators and applications, J. math. anal. appl., 295, 2, 645-657, (2004) · Zbl 1045.47044 [9] Krasnoselskii, M.A.; Zabreiko, P.P., Geometrical methods of nonlinear analysis, (1984), Springer-Verlag Berlin [10] Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM rev., 18, 4, 621-709, (1976) · Zbl 0345.47044 [11] Ando, T., On fundamental properties of a Banach space with a cone, Pacific J. math., 12, 1163-1169, (1962) · Zbl 0123.30802 [12] Deimling, K., Nonlinear functional analysis, (1985), Springer-Verlag · Zbl 0559.47040 [13] Guo, D., Partially ordered methods in nonlinear analysis, (2000), Shandong Science and Technology Press Jinan, (in Chinese) [14] Liang, Z.D.; Wang, C.Y., A theorem on operator equation of positive α-homogeneous and its applications, Acta math. sinica (chin. ser.), 39, 2, 204-208, (1996) · Zbl 0880.47038 [15] Liang, Z.D.; Wang, W.X., Fixed point theorems of a class of nonlinear operators and applications, Acta math. sinica (chin. ser.), 48, 4, 789-800, (2005) · Zbl 1125.47313 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.