×

Frequency-dependent data weighting in global gravity field modeling from satellite data contaminated by non-stationary noise. (English) Zbl 1138.86308

Summary: Satellite data that are used to model the global gravity field of the Earth are typically corrupted by correlated noise, which can be related to a frequency dependence of the data accuracy. We show an opportunity to take such noise into account by using a proper noise covariance matrix in the estimation procedure. If the dependence of noise on frequency is not known a priori, it can be estimated on the basis of a posteriori residuals. The methodology can be applied to data with gaps. Non-stationarity of noise can also be dealt with, provided that the necessary a priori information exists. The proposed methodology is illustrated with CHAllenging Mini-satellite Payload (CHAMP) data processing. It is shown, in particular, that the usage of a proper noise model can make the measurements of non-gravitational satellite accelerations unnecessarily. This opens the door for high-quality modeling of the Earth’s gravity field on the basis of observed orbits of non-dedicated satellites (i.e., satellites without an on-board accelerometer). Furthermore, the processing of data from dedicated satellite missions — GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity field and steady-state Ocean Circulation Explorer) – may also benefit from the proposed methodology.

MSC:

86A30 Geodesy, mapping problems
86-08 Computational methods for problems pertaining to geophysics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Bouman J (2000) Quality assessment of satellite-based global gravity field models, Ph.D thesis, Delft University of Technology
[2] Davis PJ (1979) Circulant matrices. Wiley, New York · Zbl 0418.15017
[3] Ditmar P, van Eck van der Sluijs AA (2004) A technique for Earth’s gravity field modeling on the basis of satellite accelerations. J Geod 78:12–33 · Zbl 1158.86322 · doi:10.1007/s00190-003-0362-1
[4] Ditmar P, Kusche J, Klees R (2003) Computation of spherical harmonic coefficients from gravity gradiometry data to be acquired by the GOCE satellite: regularization issues. J Geod 77:465–477 · Zbl 1064.86507 · doi:10.1007/s00190-003-0349-y
[5] Ditmar P, Klees R, Kuznetsov V, van Eck van der Sluijs AA, Schrama E, Liu X (2004a) Gravity field analysis with the acceleration approach on the basis of data from the CHAMP satellite mission. In: Proceedings of the IAG international symposium ”Gravity, Geoid and Space Missions – GGSM2004”, Porto, Portugal, 30 August–3 September, 2004, CDROM
[6] Ditmar P, van Eck van der Sluijs AA, Kuznetsov V (2004b) Modeling the Earth’s gravity field from precise satellite orbit data: the acceleration approach works! (available as http://earth.esa.int/workshops/goce04/participants/81/paper_accelerations.p df). In: Proceedings of the 2nd international GOCE user workshop, Frascati (Italy), 8–10 March, 2004. European Space Agency
[7] Ditmar P, Kuznetsov V, van Eck van der Sluijs AA, Klees R (2006a) Modeling of the Earth’s gravity field from CHAMP satellite data by means of the acceleration approach. In: Proceedings of the joint CHAMP/GRACE science meeting, GeoForschungsZentrum, Potsdam, 6–8 July, 2004 (submitted)
[8] Ditmar P, Kuznetsov V, van Eck van der Sluijs AA, Schrama E, Klees R (2006b) ’DEOS_CHAMP-01C_70’: a model of the Earth’s gravity field computed from accelerations of the CHAMP satellite. J Geod 79:586–601 · doi:10.1007/s00190-005-0008-6
[9] ESA (1999) Gravity field and steady-state ocean circulation missions. Reports for mission selection. The four candidate Earth explorer core missions, SP-1233(1). European Space Agency, Noordwijk
[10] Förste C, Flechtner F, Schmidt R, Meyer U, Stubenvoll R, Barthelmes F, König R, Neumayer KH, Rothacher M, Reigber C, Biancale R, Bruinsma S, Lemoine J-M, Raimondo JC (2005) A new high resolution global gravity field model derived from combination of GRACE and CHAMP mission and altimetry/gravimetry surface gravity data. Poster presented at EGU General Assembly 2005, Vienna, Austria, 24–29 April, 2005. Available as http://www.gfz-potsdam.de/pb1/op/grace/results/grav/g004_EGU05-A-04561.pdf
[11] Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Nat Bureau Stand 49:409–436 · Zbl 0048.09901
[12] Kay SM, Marple SL (1981) Spectrum analysis – a modern perspective. Proc IEEE 69(11):1380–1419 · doi:10.1109/PROC.1981.12184
[13] Klees R, Broersen P (2002) How to handle colored noise in large least-squares problems. Building the optimal filter. Delft University Press, Delft
[14] Klees R, Ditmar P (2004) How to handle colored noise in large least-squares problems in the presence of data gaps? In: Sansò F (ed) V Hotine–Marussi symposium on mathematical geodesy. International association of geodesy symposia, vol 127. Springer, Berlin Heidelberg New York, pp 39–48
[15] Klees R, Ditmar P, Broersen P (2003) How to handle colored observation noise in large-scale least-squares problems. J Geod 76:629–640 · doi:10.1007/s00190-002-0291-4
[16] Koch K-R, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76:259–268 · Zbl 1029.86009 · doi:10.1007/s00190-002-0245-x
[17] Kusche J, Klees R (2002) Regularization of gravity field estimation from satellite gravity gradients. J Geod 76:359–368 · doi:10.1007/s00190-002-0257-6
[18] Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA/TP-1998-206861. NASA GSFC Greenbelt, Maryland
[19] Liu X, Ditmar P, Klees R (2006) Estimation of data noise in global gravity field modeling. In: Proceedings of the ”Dynamic Planet – 2005” scientific meeting, Cairns, Australia, 22–26 August, 2005 (submitted)
[20] Mayer-Gürr T, Ilk KH, Eicker A, Feuchtinger M (2005) ITG-CHAMP01: a CHAMP gravitiy field model from short kinematical arcs of a one-year observation period. J Geod 78:462–480 · Zbl 1066.86502 · doi:10.1007/s00190-004-0413-2
[21] Migliaccio F, Reguzzoni M, Sansò F (2004) Space-wise approach to satellite gravity field determination in the presence of colored noise. J Geod 78:304–313 · doi:10.1007/s00190-004-0396-z
[22] Reigber C (1989) Gravity field recovery from satellite tracking data. In: Sansò F, Rummel R (eds) Theory of satellite geodesy and gravity field determination. Lecture Notes on Earth Sciences Vol 25. Springer, Berlin Heidelberg New York, 197–234
[23] Reigber C, Bock R, Forste C, Grunwaldt L, Jakowski N, Lühr H, Schwintzer P, Tilgner C (1996) CHAMP phase B executive summary. GeoForschungsZentrum, STR96/13, Potsdam
[24] Reigber C, Jochmann H, Wünsch J, Petrovic S, Schwintzer P, Barthelmes F, Neumayer K-H, König R, Förste C, Balmino G, Biancale R, Lemoine J-M, Loyer S, Perosanz F (2005a) Earth gravity field and seasonal variability from CHAMP. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP – results from three years in orbit. Springer, Berlin Heidelberg New York, pp 25–30
[25] Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer K-H, Schwintzer P, Zhu SY (2005b) An earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J Geodyn 39:1–10 · doi:10.1016/j.jog.2004.07.001
[26] Reubelt T, Austen G, Grafarend EW (2003) Harmonic analysis of the Earth’s gravitational field by means of semi-continuous ephemerides of a low Earth orbiting GPS-tracked satellite. Case study: CHAMP. J Geod 77:257–278 · Zbl 1064.86510
[27] Schuh WD (1996) Tailored numerical solution strategies for the global determination of the Earth’s gravity field. Mitteilungen der geodätischen Institute der Technischen Universität Graz. Folge 81. Graz
[28] Schuh WD (2003) The processing of band-limited measurements: Filtering techniques in the least squares context and in the presence of data gaps. Space Sci Rev 108:67–78 · doi:10.1023/A:1026121814042
[29] Sneeuw NJ (2002) Validation of fast pre-mission error analysis of the GOCE gradiometry mission by a full gravity field recovery simulation. J Geodyn 33:43–52 · doi:10.1016/S0264-3707(01)00053-9
[30] Švehla D, Rothacher M (2003) Kinematic precise orbit determination for gravity field determination (available as http://tau.fesg.tu-muenchen.de/\(\sim\)drazen/IUGG03_Svehla.pdf). In: Sansò F (ed) A window on the future of geodesy. IUGG General Assembly 2003, 30 June–11 July 2003, Sapporo, Japan. International Association of Geodesy Symposia, vol 128. Springer, Berlin Heidelberg New York, pp 181–188
[31] Tapley BD (1997) The gravity recovery and climate experiment (GRACE). Suppl EOS Trans Am Geophys Union 78(46):163
[32] Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Poole S, Wang F (2005) GGM02 - an improved Earth gravity field model from GRACE. J Geod 79:467–478 · doi:10.1007/s00190-005-0480-z
[33] Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variablity in the Earth system. Science 294:2342–2345
[34] Teunissen PJG (2000) Adjustment theory; an introduction. Delft University Press, Delft
[35] Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. V.H. Winston and Sons, Washington · Zbl 0354.65028
[36] van Loon JP, Kusche J (2005) Stochastic model validation of satellite gravity data: a test with CHAMP pseudo-observations. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions. International association of geodesy symposia, vol 129. Springer, Berlin Heidelberg New York, pp 24–29
[37] Voevodin VV, Tyrtyshnikov EE (1987) Vychislitel’nye processy s Toeplitzevymi matritsami (computations with Toeplitz matrices, in Russian). Nauka, Moscow
[38] Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31, L11501. doi: 10.1029/2004GL019779
[39] Wermuth M, Švehla D, Földvary L, Gerlach C, Gruber T, Frommknecht B, Peters T, Rothacher M, Rummel R, Steigenberger P (2004) A gravity field model from two years of CHAMP kinematic orbit using the energy balance approach. Oral presentation at the EGU 1st General Assembly, Nice, France, 25–30 April 2004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.