Fixed point theorems for generalized contractions in ordered metric spaces. (English) Zbl 1142.47033

The authors present some fixed point results for self-generalized contractions in ordered metric spaces. These results generalize some recent results of A. C. M. Ran and M. C. Reurings [Proc. Am. Math. Soc. 132, No. 5, 1435–1443 (2004; Zbl 1060.47056)] as well as J. J. Nieto and R. Rodríguez-Lopez [Order 22, No. 3, 223–239 (2005; Zbl 1095.47013); Acta Math. Sin. Engl. Ser. 23, 2205–2212 (2007; Zbl 1140.47045)], in terms of Picard operators [cf. I. A. Rus, Sci. Math. Jpn. 58, No. 1, 191–219 (2003; Zbl 1031.47035)]. Moreover, for the case of generalized \(\varphi\)-contractions, a fixed point theorem is established, as a modification of that of R. P. Agarwal, M. A. El–Gebeily, and D. O’Regan [Appl. Anal. 87, No. 1, 109–116 (2008; Zbl 1140.47042)]. Some applications are given to Fredholm and Volterra type integral equations.


47H10 Fixed-point theorems
54H25 Fixed-point and coincidence theorems (topological aspects)
47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
Full Text: DOI


[1] R.P. Agarwal, M.A. El-Gebeily, D. O’Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., in press · Zbl 1140.47042
[2] Drici, Z.; McRae, F.A.; Vasundhara Devi, J., Fixed point theorems in partially ordered metric spaces for operators with PPF dependence, Nonlinear anal., 7, 641-647, (2007) · Zbl 1127.47049
[3] Fréchet, M., LES espaces abstraits, (1928), Gauthier-Villars Paris · JFM 54.0614.02
[4] Hadžić, O.; Pap, E.; Radu, V., Generalized contraction mapping principles in probabilistic metric spaces, Acta math. hungar., 101, 131-138, (2003) · Zbl 1050.47052
[5] Hadžić, O.; Pap, E., Fixed point theory in probabilistic metric spaces, (2001), Kluwer Acad. Publ. Dordrecht
[6] Jachymski, J.; Jóźwik, I., Nonlinear contractive conditions: A comparison and related problems, Banach center publ., 77, 123-146, (2007) · Zbl 1149.47044
[7] Nieto, J.J.; Rodríguez-López, R., Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22, 223-239, (2005) · Zbl 1095.47013
[8] Nieto, J.J.; Pouso, R.L.; Rodríguez-López, R., Fixed point theorem theorems in ordered abstract sets, Proc. amer. math. soc., 135, 2505-2517, (2007) · Zbl 1126.47045
[9] Nieto, J.J.; Rodríguez-López, R., Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations, Acta math. sin. (engl. ser.), 23, 2205-2212, (2007) · Zbl 1140.47045
[10] Petruşel, A.; Rus, I.A., Fixed point theorems in ordered L-spaces, Proc. amer. math. soc., 134, 411-418, (2006) · Zbl 1086.47026
[11] Ran, A.C.M.; Reurings, M.C., A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. amer. math. soc., 132, 1435-1443, (2004) · Zbl 1060.47056
[12] Rus, I.A., Generalized contractions and applications, (2001), Cluj Univ. Press · Zbl 0968.54029
[13] Rus, I.A., Picard operators and applications, Sci. math. jpn., 58, 191-219, (2003) · Zbl 1031.47035
[14] Rus, I.A.; Petruşel, A.; Petruşel, G., Fixed point theory 1950-2000: Romanian contributions, (2002), House of the Book of Science Cluj-Napoca · Zbl 1005.54037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.