×

Rough sets: some extensions. (English) Zbl 1142.68550

Summary: We present some extensions of the rough set approach and we outline a challenge for the rough set based research.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
68T30 Knowledge representation

Software:

ElemStatLearn
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] (Alpigini, J. J.; Peters, J. F.; Skowron, A.; Zhong, N., Third International Conference on Rough Sets and Current Trends in Computing (RSCTC’2002), Malvern, PA, October 14-16, 2002. Third International Conference on Rough Sets and Current Trends in Computing (RSCTC’2002), Malvern, PA, October 14-16, 2002, Lecture Notes in Artificial Intelligence, vol. 2475 (2002), Springer-Verlag: Springer-Verlag Heidelberg) · Zbl 1001.00048
[2] (Ariew, R.; Garber, D.; Leibniz, G. W., Philosophical Essays (1989), Hackett Publishing Company: Hackett Publishing Company Indianapolis)
[3] Barsalou, L. W., Perceptual symbol systems, Behavioral and Brain Sciences, 22, 577-660 (1999)
[4] J. Bazan, H.S. Nguyen, S.H. Nguyen, P. Synak, J. Wróblewski, Rough set algorithms in classification problems, in: Polkowski et al. [55]; J. Bazan, H.S. Nguyen, S.H. Nguyen, P. Synak, J. Wróblewski, Rough set algorithms in classification problems, in: Polkowski et al. [55] · Zbl 0992.68197
[5] J. Bazan, A. Skowron, On-line elimination of non-relevant parts of complex objects in behavioral pattern identification, in: Pal et al. [40]; J. Bazan, A. Skowron, On-line elimination of non-relevant parts of complex objects in behavioral pattern identification, in: Pal et al. [40]
[6] J.G. Bazan, H.S. Nguyen, J.F. Peters, A. Skowron, M. Szczuka, Rough set approach to pattern extraction from classifiers, in: Skowron and Szczuka [78]<http://www.elsevier.nl/locate/entcs/volume82.html>; J.G. Bazan, H.S. Nguyen, J.F. Peters, A. Skowron, M. Szczuka, Rough set approach to pattern extraction from classifiers, in: Skowron and Szczuka [78]<http://www.elsevier.nl/locate/entcs/volume82.html> · Zbl 1270.68306
[7] J.G. Bazan, H.S. Nguyen, A. Skowron, M. Szczuka, A view on rough set concept approximation, in: Wang et al. [93]; J.G. Bazan, H.S. Nguyen, A. Skowron, M. Szczuka, A view on rough set concept approximation, in: Wang et al. [93] · Zbl 1026.68615
[8] J.G. Bazan, J.F. Peters, A. Skowron, Behavioral pattern identification through rough set modelling, in: Śle¸zak et al. [84]; J.G. Bazan, J.F. Peters, A. Skowron, Behavioral pattern identification through rough set modelling, in: Śle¸zak et al. [84]
[9] J.G. Bazan, A. Skowron, Classifiers based on approximate reasoning schemes, in: Dunin-Ke¸plicz et al. [12]; J.G. Bazan, A. Skowron, Classifiers based on approximate reasoning schemes, in: Dunin-Ke¸plicz et al. [12] · Zbl 1082.68832
[10] Behnke, S., Hierarchical Neural Networks for Image Interpretation. Hierarchical Neural Networks for Image Interpretation, Lecture Notes in Computer Science, vol. 2766 (2003), Springer: Springer Heidelberg · Zbl 1041.68076
[11] Breiman, L., Statistical modeling: the two cultures, Statistical Science, 16, 3, 199-231 (2001) · Zbl 1059.62505
[12] (Dunin-Ke¸plicz, B.; Jankowski, A.; Skowron, A.; Szczuka, M., Monitoring Security, and Rescue Tasks in Multiagent Systems (MSRAS’2004). Monitoring Security, and Rescue Tasks in Multiagent Systems (MSRAS’2004), Advances in Soft Computing (2005), Springer: Springer Heidelberg) · Zbl 1073.68005
[13] Düntsch, I.; Gediga, G., Rough Set Data Analysis: A Road to Non-invasive Knowledge Discovery (2000), Methodos Publishers: Methodos Publishers Bangor, UK
[14] Fahle, M.; Poggio, T., Perceptual Learning (2002), MIT Press: MIT Press Cambridge
[15] Friedman, J. H.; Hastie, T.; Tibshirani, R., The Elements of Statistical Learning: Data Mining, Inference and Prediction (2001), Springer-Verlag: Springer-Verlag Heidelberg · Zbl 0973.62007
[16] Gell-Mann, M., The Quark and the Jaguar - Adventures in the Simple and the Complex (1994), Brown and Co.: Brown and Co. London · Zbl 0833.00011
[17] Greco, S.; Matarazzo, B.; Słowiński, R., Dealing with missing data in rough set analysis of multi-attribute and multi-criteria decision problems, (Zanakis, S.; Doukidis, G.; Zopounidis, C., Decision Making: Recent Developments and Worldwide Applications (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Boston, MA), 295-316
[18] Greco, S.; Matarazzo, B.; Słowiński, R., Rough set theory for multicriteria decision analysis, European Journal of Operational Research, 129, 1, 1-47 (2001) · Zbl 1008.91016
[19] Greco, S.; Matarazzo, B.; Słowiński, R., Data mining tasks and methods: Classification: multicriteria classification, (Kloesgen, W.; Żytkow, J., Handbook of KDD (2002), Oxford University Press: Oxford University Press Oxford), 318-328
[20] S. Greco, B. Matarazzo, R. Słowiński, Dominance-based rough set approach to knowledge discovery (I) - general perspective, in: Zhong and Liu [99]; S. Greco, B. Matarazzo, R. Słowiński, Dominance-based rough set approach to knowledge discovery (I) - general perspective, in: Zhong and Liu [99]
[21] S. Greco, B. Matarazzo, R. Słowiński, Dominance-based rough set approach to knowledge discovery (II) - extensions and applications, in: Zhong and Liu [99]; S. Greco, B. Matarazzo, R. Słowiński, Dominance-based rough set approach to knowledge discovery (II) - extensions and applications, in: Zhong and Liu [99]
[22] S. Greco, R. Słowiński, J. Stefanowski, M. Zurawski, Incremental versus non-incremental rule induction for multicriteria classification, in: Peters et al. [49]; S. Greco, R. Słowiński, J. Stefanowski, M. Zurawski, Incremental versus non-incremental rule induction for multicriteria classification, in: Peters et al. [49]
[23] Grzymała-Busse, J. W., Managing Uncertainty in Expert Systems (1990), Kluwer Academic Publishers: Kluwer Academic Publishers Norwell, MA · Zbl 0751.68069
[24] Harnad, S., Categorical Perception: The Groundwork of Cognition (1987), Cambridge University Press: Cambridge University Press New York, NY
[25] Huhns, M. N.; Singh, M. P., Readings in Agents (1998), Morgan Kaufman: Morgan Kaufman San Mateo
[26] R. Keefe, Theories of Vagueness, Cambridge Studies in Philosophy, Cambridge, UK, 2000.; R. Keefe, Theories of Vagueness, Cambridge Studies in Philosophy, Cambridge, UK, 2000.
[27] (Kloesgen, W.; Żytkow, J., Handbook of Knowledge Discovery and Data Mining (2002), Oxford University Press: Oxford University Press Oxford) · Zbl 1003.68037
[28] G.W. Leibniz, Discourse on metaphysics, in: Ariew and Garber [2]; G.W. Leibniz, Discourse on metaphysics, in: Ariew and Garber [2]
[29] Leśniewski, S., Grungzüge eines neuen Systems der Grundlagen der Mathematik, Fundamenta Mathematicae, 14, 1-81 (1929)
[30] Leśniewski, S., On the foundations of mathematics, Topoi, 2, 7-52 (1982)
[31] Lin, T. Y., Neighborhood systems and approximation in database and knowledge base systems, (Emrich, M. L.; Phifer, M. S.; Hadzikadic, M.; Ras, Z. W., Proceedings of the Fourth International Symposium on Methodologies of Intelligent Systems (Poster Session), 12-15 October 1989 (1989), Oak Ridge National Laboratory: Oak Ridge National Laboratory Charlotte, NC), 75-86
[32] Lin, T. Y., The discovery analysis and representation of data dependencies in databases, (Polkowski, L.; Skowron, A., Rough Sets in Knowledge Discovery 1: Methodology and Applications. Rough Sets in Knowledge Discovery 1: Methodology and Applications, Studies in Fuzziness and Soft Computing, vol. 18 (1998), Physica-Verlag: Physica-Verlag Heidelberg), 107-121 · Zbl 0927.68089
[33] (Lin, T. Y.; Cercone, N., Rough Sets and Data Mining - Analysis of Imperfect Data (1997), Kluwer Academic Publishers: Kluwer Academic Publishers Boston, USA) · Zbl 0855.00039
[34] S. Marcus, The paradox of the heap of grains, in respect to roughness, fuzziness and negligibility, in: Polkowski and Skowron [57]; S. Marcus, The paradox of the heap of grains, in respect to roughness, fuzziness and negligibility, in: Polkowski and Skowron [57] · Zbl 0907.03006
[35] T.M. Mitchel, Machine Learning, McGraw-Hill Series in Computer Science Boston, MA, 1999.; T.M. Mitchel, Machine Learning, McGraw-Hill Series in Computer Science Boston, MA, 1999.
[36] Nguyen, S. H.; Bazan, J.; Skowron, A.; Nguyen, H. S., Layered learning for concept synthesis, (Peters, J. F.; Skowron, A., Transactions on Rough Sets I: Journal Subline. Transactions on Rough Sets I: Journal Subline, Lecture Notes in Computer Science, vol. 3100 (2004), Springer: Springer Heidelberg), 187-208 · Zbl 1104.68565
[37] T.T. Nguyen, A. Skowron, Rough set approach to domain knowledge approximation, in: Wang et al. [93]; T.T. Nguyen, A. Skowron, Rough set approach to domain knowledge approximation, in: Wang et al. [93] · Zbl 1026.68644
[38] Orłowska, E., Semantics of vague conepts, (Dorn, G.; Weingartner, P., Foundation of Logic and Linguistics (1984), Plenum Press: Plenum Press New York), 465-482
[39] Orłowska, E., Reasoning about vague concepts, Bulletin of the Polish Academy of Sciences, Mathematics, 35, 643-652 (1987) · Zbl 0641.68160
[40] (Pal, S. K.; Bandoyopadhay, S.; Biswas, S., Proceedings of the First International Conference on Pattern Recognition and Machine Intelligence (PReMI 2005), 18-22 December 2005, Indian Statistical Institute, Kolkata. Proceedings of the First International Conference on Pattern Recognition and Machine Intelligence (PReMI 2005), 18-22 December 2005, Indian Statistical Institute, Kolkata, Lecture Notes in Computer Science, vol. 3776 (2005), Springer: Springer Heidelberg)
[41] (Pal, S. K.; Polkowski, L.; Skowron, A., Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies (2004), Springer-Verlag: Springer-Verlag Heidelberg) · Zbl 1040.68113
[42] Z. Pawlak, Classification of Objects by Means of Attributes, Reports, vol. 429, Institute of Computer Science, Polish Academy of Sciences Warsaw, Poland, 1981.; Z. Pawlak, Classification of Objects by Means of Attributes, Reports, vol. 429, Institute of Computer Science, Polish Academy of Sciences Warsaw, Poland, 1981.
[43] Z. Pawlak, Rough Relations, Reports, vol. 435, Institute of Computer Science, Polish Academy of Sciences Warsaw, Poland, 1981.; Z. Pawlak, Rough Relations, Reports, vol. 435, Institute of Computer Science, Polish Academy of Sciences Warsaw, Poland, 1981.
[44] Pawlak, Z., Rough sets, International Journal of Computer and Information Sciences, 11, 341-356 (1982) · Zbl 0501.68053
[45] Pawlak, Z., Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Solving, vol. 9 (1991), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, The Netherlands · Zbl 0758.68054
[46] Pawlak, Z., Decision rules, Bayes’ rule and rough sets, (Skowron, A.; Ohsuga, S.; Zhong, N., Proceedings of the 7th International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing (RSFDGrC’1999), Yamaguchi, 9-11 November 1999. Proceedings of the 7th International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing (RSFDGrC’1999), Yamaguchi, 9-11 November 1999, Lecture Notes in Artificial Intelligence, vol. 1711 (1999), Springer-Verlag: Springer-Verlag Heidelberg), 1-9 · Zbl 0948.03026
[47] Z. Pawlak, A. Skowron, Rudiments of rough sets, Information Sciences, in press, doi:10.1016/j.ins.2006.06.003; Z. Pawlak, A. Skowron, Rudiments of rough sets, Information Sciences, in press, doi:10.1016/j.ins.2006.06.003 · Zbl 1142.68549
[48] (Peters, J. F.; Skowron, A., Transactions on Rough Sets III: Journal Subline. Transactions on Rough Sets III: Journal Subline, Lecture Notes in Computer Science, vol. 3400 (2005), Springer: Springer Heidelberg) · Zbl 1063.68010
[49] (Peters, J. F.; Skowron, A.; Dubois, D.; Grzymała-Busse, J. W.; Inuiguchi, M.; Polkowski, L., Transactions on Rough Sets II. Rough Sets and Fuzzy Sets: Journal Subline. Transactions on Rough Sets II. Rough Sets and Fuzzy Sets: Journal Subline, Lecture Notes in Computer Science, vol. 3135 (2004), Springer: Springer Heidelberg) · Zbl 1062.68008
[50] Pindur, R.; Susmaga, R.; Stefanowski, J., Hyperplane aggregation of dominance decision rules, Fundamenta Informaticae, 61, 2, 117-137 (2004) · Zbl 1083.68121
[51] Poggio, T.; Smale, S., The mathematics of learning: dealing with data, Notices of the AMS, 50, 5, 537-544 (2003) · Zbl 1083.68100
[52] Polkowski, L., Rough Sets: Mathematical Foundations. Rough Sets: Mathematical Foundations, Advances in Soft Computing (2002), Physica-Verlag: Physica-Verlag Heidelberg · Zbl 1040.68114
[53] Polkowski, L., Rough mereology: a rough set paradigm for unifying rough set theory and fuzzy set theory, Fundamenta Informaticae, 54, 67-88 (2003) · Zbl 1031.03069
[54] L. Polkowski, Toward rough set foundations. Mereological approach, in: Tsumoto et al. [91]; L. Polkowski, Toward rough set foundations. Mereological approach, in: Tsumoto et al. [91] · Zbl 1103.03049
[55] (Polkowski, L.; Lin, T. Y.; Tsumoto, S., Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems. Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems, Studies in Fuzziness and Soft Computing, vol. 56 (2000), Springer-Verlag/Physica-Verlag: Springer-Verlag/Physica-Verlag Heidelberg) · Zbl 0979.00021
[56] Polkowski, L.; Skowron, A., Rough mereology: A new paradigm for approximate reasoning, International Journal of Approximate Reasoning, 15, 4, 333-365 (1996) · Zbl 0938.68860
[57] (Polkowski, L.; Skowron, A., First International Conference on Rough Sets and Soft Computing RSCTC’1998. First International Conference on Rough Sets and Soft Computing RSCTC’1998, Lecture Notes in Artificial Intelligence, vol. 1424 (1998), Springer-Verlag: Springer-Verlag Warsaw, Poland) · Zbl 0891.00026
[58] (Polkowski, L.; Skowron, A., Rough Sets in Knowledge Discovery 1: Methodology and Applications. Rough Sets in Knowledge Discovery 1: Methodology and Applications, Studies in Fuzziness and Soft Computing, vol. 18 (1998), Physica-Verlag: Physica-Verlag Heidelberg) · Zbl 0910.00028
[59] Polkowski, L.; Skowron, A., Towards adaptive calculus of granules, (Zadeh, L. A.; Kacprzyk, J., Computing with Words in Information/Intelligent Systems (1999), Physica-Verlag: Physica-Verlag Heidelberg), 201-227 · Zbl 0949.68143
[60] L. Polkowski, A. Skowron, Rough mereology in information systems. a case study: qualitative spatial reasoning, in: Polkowski et al. [55]; L. Polkowski, A. Skowron, Rough mereology in information systems. a case study: qualitative spatial reasoning, in: Polkowski et al. [55] · Zbl 0992.68198
[61] Polkowski, L.; Skowron, A., Rough mereological calculi of granules: A rough set approach to computation, Computational Intelligence: An International Journal, 17, 3, 472-492 (2001)
[62] Polkowski, L.; Skowron, A.; Żytkow, J., Rough foundations for rough sets, (Lin, T. Y.; Wildberger, A. M., Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery (1995), Simulation Councils, Inc.: Simulation Councils, Inc. San Diego, CA, USA), 55-58
[63] Read, S., Thinking about Logic: An Introduction to the Philosophy of Logic (1994), Oxford University Press: Oxford University Press Oxford, New York
[64] Skowron, A., Rough sets in KDD - plenary talk, (Shi, Z.; Faltings, B.; Musen, M., 16th World Computer Congress (IFIP’2000): Proceedings of Conference on Intelligent Information Processing (IIP’2000) (2000), Publishing House of Electronic Industry: Publishing House of Electronic Industry Beijing), 1-14
[65] Skowron, A., Toward intelligent systems: Calculi of information granules, Bulletin of the International Rough Set Society, 5, 1-2, 9-30 (2001) · Zbl 1054.68692
[66] A. Skowron, Approximate reasoning in distributed environments, in: Zhong and Liu [99]; A. Skowron, Approximate reasoning in distributed environments, in: Zhong and Liu [99]
[67] Skowron, A., Perception logic in intelligent systems (keynote talk), (Blair, S.; etal., Proceedings of the 8th Joint Conference on Information Sciences (JCIS 2005), Salt Lake City, Utah, USA, 21-26 July 2005 (2005), X-CD Technologies: A Conference & Management Company: X-CD Technologies: A Conference & Management Company 15 Coldwater Road, Toronto, Ontario, M3B 1Y8), 1-5
[68] Skowron, A., Rough sets and vague concepts, Fundamenta Informaticae, 64, 1-4, 417-431 (2005) · Zbl 1102.68131
[69] A. Skowron, Rough sets in perception-based computing (keynote talk), in: Pal et al. [40]; A. Skowron, Rough sets in perception-based computing (keynote talk), in: Pal et al. [40]
[70] A. Skowron, J. Peters, Rough sets: Trends and challenges, in: Wang et al. [93]; A. Skowron, J. Peters, Rough sets: Trends and challenges, in: Wang et al. [93] · Zbl 1026.68653
[71] Skowron, A.; Stepaniuk, J., Tolerance approximation spaces, Fundamenta Informaticae, 27, 2-3, 245-253 (1996) · Zbl 0868.68103
[72] Skowron, A.; Stepaniuk, J., Information granules: towards foundations of granular computing, International Journal of Intelligent Systems, 16, 1, 57-86 (2001) · Zbl 0969.68078
[73] A. Skowron, J. Stepaniuk, Information granules and rough-neural computing, in: Pal et al. [41]; A. Skowron, J. Stepaniuk, Information granules and rough-neural computing, in: Pal et al. [41]
[74] A. Skowron, J. Stepaniuk, Ontological framework for approximation, in: Śle¸zak et al. [83]; A. Skowron, J. Stepaniuk, Ontological framework for approximation, in: Śle¸zak et al. [83] · Zbl 1134.68514
[75] A. Skowron, R. Swiniarski, Rough sets and higher order vagueness, in: Śle¸zak et al. [83]; A. Skowron, R. Swiniarski, Rough sets and higher order vagueness, in: Śle¸zak et al. [83] · Zbl 1134.68558
[76] A. Skowron, R. Swiniarski, P. Synak, Approximation spaces and information granulation, in: Peters and Skowron [48]; A. Skowron, R. Swiniarski, P. Synak, Approximation spaces and information granulation, in: Peters and Skowron [48] · Zbl 1116.68602
[77] Skowron, A.; Synak, P., Complex patterns, Fundamenta Informaticae, 60, 1-4, 351-366 (2004) · Zbl 1083.68122
[78] (Skowron, A.; Szczuka, M., Proceedings of the Workshop on Rough Sets in Knowledge Discovery and Soft Computing at ETAPS 2003, 12-13 April 2003. Proceedings of the Workshop on Rough Sets in Knowledge Discovery and Soft Computing at ETAPS 2003, 12-13 April 2003, Electronic Notes in Computer Science, vol. 82(4) (2003), Elsevier: Elsevier Amsterdam, Netherlands), Available from:
[79] D. Śle¸zak, M. Szczuka, J. Wróblewski, Feedforward concept networks, in: Dunin-Ke¸plicz et al. [12]; D. Śle¸zak, M. Szczuka, J. Wróblewski, Feedforward concept networks, in: Dunin-Ke¸plicz et al. [12]
[80] Śle¸zak, D., Normalized decision functions and measures for inconsistent decision tables analysis, Fundamenta Informaticae, 44, 291-319 (2000) · Zbl 0970.68171
[81] D. Śle¸zak, Various approaches to reasoning with frequency-based decision reducts: a survey, in: Polkowski et al. [55]; D. Śle¸zak, Various approaches to reasoning with frequency-based decision reducts: a survey, in: Polkowski et al. [55]
[82] D. Śle¸zak, Rough sets and Bayes factor, in: Peters and Skowron [48]; D. Śle¸zak, Rough sets and Bayes factor, in: Peters and Skowron [48]
[83] (Śle¸zak, D.; Wang, G.; Szczuka, M.; Düntsch, I.; Yao, Y., Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC’2005), Regina, Canada, 31 August-3 September 2005. Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC’2005), Regina, Canada, 31 August-3 September 2005, Lecture Notes in Artificial Intelligence, vol. 3641 (2005), Springer-Verlag: Springer-Verlag Heidelberg), (Part I) · Zbl 1086.68007
[84] (Śle¸zak, D.; Yao, J. T.; Peters, J. F.; Ziarko, W.; Hu, X., Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC’2005), Regina, Canada, 31 August-3 September 2005. Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC’2005), Regina, Canada, 31 August-3 September 2005, Lecture Notes in Artificial Intelligence, vol. 3642 (2005), Springer-Verlag: Springer-Verlag Heidelberg), (Part II) · Zbl 1086.68008
[85] Śle¸zak, D.; Ziarko, W., The investigation of the Bayesian rough set model, International Journal of Approximate Reasoning, 40, 81-91 (2005) · Zbl 1099.68089
[86] R. Słowiński, S. Greco, B. Matarazzo, Rough set analysis of preference-ordered data, in: Alpigini et al. [1]; R. Słowiński, S. Greco, B. Matarazzo, Rough set analysis of preference-ordered data, in: Alpigini et al. [1] · Zbl 1013.68599
[87] Słowiński, R.; Vanderpooten, D., Similarity relation as a basis for rough approximations, (Wang, P., Advances in Machine Intelligence and Soft Computing, vol. 4 (1997), Duke University Press: Duke University Press Duke, NC), 17-33
[88] (Staab, S.; Studer, R., Handbook on Ontologies. Handbook on Ontologies, International Handbooks on Information Systems (2004), Springer: Springer Heidelberg) · Zbl 1429.68001
[89] Stepaniuk, J., Approximation spaces, reducts and representatives, (Polkowski, L.; Skowron, A., Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems. Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Studies in Fuzziness and Soft Computing, vol. 19 (1998), Physica-Verlag: Physica-Verlag Heidelberg), 109-126 · Zbl 0943.68158
[90] Stone, P., Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer (2000), The MIT Press: The MIT Press Cambridge, MA
[91] (Tsumoto, S.; Słowiński, R.; Komorowski, J.; Grzymała-Busse, J., Proceedings of the 4th International Conference on Rough Sets and Current Trends in Computing (RSCTC’2004), Uppsala, Sweden, 1-5 June 2004. Proceedings of the 4th International Conference on Rough Sets and Current Trends in Computing (RSCTC’2004), Uppsala, Sweden, 1-5 June 2004, Lecture Notes in Artificial Intelligence, vol. 3066 (2004), Springer-Verlag: Springer-Verlag Heidelberg) · Zbl 1088.68009
[92] Vapnik, V., Statistical Learning Theory (1998), John Wiley & Sons: John Wiley & Sons New York, NY · Zbl 0935.62007
[93] (Wang, G.; Liu, Q.; Yao, Y.; Skowron, A., Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC’2003), Chongqing, China, 26-29 May 2003. Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC’2003), Chongqing, China, 26-29 May 2003, Lecture Notes in Artificial Intelligence, vol. 2639 (2003), Springer-Verlag: Springer-Verlag Heidelberg)
[94] Y.Y. Yao, Generalized rough set models, in: Polkowski and Skowron [58]; Y.Y. Yao, Generalized rough set models, in: Polkowski and Skowron [58]
[95] Yao, Y. Y., Information granulation and rough set approximation, International Journal of Intelligent Systems, 16, 87-104 (2001) · Zbl 0969.68079
[96] Y.Y. Yao, On generalizing rough set theory, in: Wang et al. [93]; Y.Y. Yao, On generalizing rough set theory, in: Wang et al. [93] · Zbl 1026.68669
[97] Y.Y. Yao, S.K.M. Wong, T.Y. Lin, A review of rough set models, in: Lin and Cercone [33]; Y.Y. Yao, S.K.M. Wong, T.Y. Lin, A review of rough set models, in: Lin and Cercone [33] · Zbl 0861.68101
[98] Zadeh, L. A., A new direction in AI: toward a computational theory of perceptions, AI Magazine, 22, 1, 73-84 (2001)
[99] (Zhong, N.; Liu, J., Intelligent Technologies for Information Analysis (2004), Springer: Springer Heidelberg) · Zbl 1058.68099
[100] Ziarko, W., Variable precision rough set model, Journal of Computer and System Sciences, 46, 39-59 (1993) · Zbl 0764.68162
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.