×

Rough sets and Boolean reasoning. (English) Zbl 1142.68551

Summary: We discuss methods based on the combination of rough sets and Boolean reasoning with applications in pattern recognition, machine learning, data mining and conflict analysis.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
68T05 Learning and adaptive systems in artificial intelligence
68T10 Pattern recognition, speech recognition
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] ()
[2] A. An, Y. Huang, X. Huang, N. Cercone, Feature selection with rough sets for web page classification, in: Peters et al. [95], pp. 1-13. · Zbl 1108.68607
[3] Banerjee, M.; Pal, S.K., Roughness of a fuzzy set, Information sciences, 93, 3-4, 235-246, (1996) · Zbl 0879.04004
[4] J. Bazan, R. Latkowski, M. Szczuka, DIXER - Distributed executor for rough set exploration system, in: Śle¸zak et al. [121], pp. 362-371.
[5] J. Bazan, H.S. Nguyen, S.H. Nguyen, P. Synak, J. Wróblewski, Rough set algorithms in classification problems, in: Polkowski et al. [98], pp. 49-88. · Zbl 0992.68197
[6] J. Bazan, A. Osmólski, A. Skowron, D. Śle¸zak, M. Szczuka, J. Wróblewski, Rough set approach to the survival analysis, in: Alpigini et al. [1], pp. 522-529.
[7] J. Bazan, A. Skowron, On-line elimination of non-relevant parts of complex objects in behavioral pattern identification, in: Pal et al. [82], pp. 720-725.
[8] Bazan, J.; Skowron, A.; Śle¸zak, D.; Wróblewski, J., Searching for the complex decision reducts: the case study of the survival analysis, (), 160-168 · Zbl 1070.68636
[9] Bazan, J.; Szczuka, M.; Wojna, M.; Wojnarski, M., On the evolution of rough set exploration system, (), 592-601 · Zbl 1103.68671
[10] J.G. Bazan, A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables, in: Polkowski and Skowron [99], pp. 321-365. · Zbl 1067.68711
[11] J.G. Bazan, H.S. Nguyen, J.F. Peters, A. Skowron, M. Szczuka, Rough set approach to pattern extraction from classifiers, in: A. Skowron, M. Szczuka (Eds.), Proceedings of the Workshop on Rough Sets in Knowledge Discovery and Soft Computing at ETAPS 2003, April 12-13, 2003, Electronic Notes in Computer Science, vol. 82 (4), Elsevier, Amsterdam, Netherlands, 2003, pp. 20-29. Available from: <http://www.elsevier.nl/locate/entcs/volume82.html>. · Zbl 1270.68306
[12] J.G. Bazan, J.F. Peters, A. Skowron, Behavioral pattern identification through rough set modelling, in: Śle¸zak et al. [121], pp. 688-697.
[13] Bazan, J.G.; Skowron, A., Classifiers based on approximate reasoning schemes, (), 191-202 · Zbl 1082.68832
[14] J.G. Bazan, M. Szczuka, RSES and RSESlib – a collection of tools for rough set computations, in: Ziarko and Yao [137], pp. 106-113. · Zbl 1014.68825
[15] Brown, F., Boolean reasoning, (1990), Kluwer Academic Publishers Dordrecht
[16] Casti, J.L., Alternate realities? mathematical models of nature and man, (1989), John Wiley & Sons New York, NY · Zbl 0676.00028
[17] Chmielewski, M.R.; Grzymała-Busse, J.W., Global discretization of continuous attributes as preprocessing for machine learning, International journal of approximate reasoning, 15, 4, 319-331, (1996) · Zbl 0949.68560
[18] Choubey, S.K.; Deogun, J.S.; Raghavan, V.V.; Sever, H., A comparison of feature selection algorithms in the context of rough classifiers, (), 1122-1128
[19] Coombs, C.H.; Avruin, G.S., The structure of conflicts, (1988), Lawrence Erlbaum London
[20] R. Deja, Conflict analysis, rough set methods and applications, in: Polkowski et al. [98], pp. 491-520.
[21] Deja, R.; Skowron, A., On some conflict models and conflict resolution, Romanian journal of information science and technology, 5, 1-2, 69-82, (2002)
[22] J. Deogun, V.V. Raghavan, A. Sarkar, H. Sever, Data mining: Trends in research and development, in: Lin and Cercone [57], pp. 9-46.
[23] Doherty, P.; Łukaszewicz, W.; Skowron, A.; Szałas, A., Knowledge engineering: A rough set approach, Studies in fuzziness and soft computing, vol. 202, (2006), Springer Heidelberg
[24] V. Dubois, M. Quafafou, Concept learning with approximation: rough version spaces, in: Alpigini et al. [1], pp. 239-246. · Zbl 1013.68574
[25] Duda, R.; Hart, P.; Stork, R., Pattern classification, (2002), John Wiley & Sons New York, NY
[26] Düntsch, I.; Gediga, G., Rough set data analysis: A road to non-invasive knowledge discovery, (2000), Methodos Publishers Bangor, UK
[27] Fedrizzi, M.; Kacprzyk, J.; Nurmi, H., How different are social choice functions: A rough sets approach, Quality and quantity, 30, 87-99, (1996)
[28] Friedman, J.H.; Hastie, T.; Tibshirani, R., The elements of statistical learning: data mining, inference, and prediction, (2001), Springer-Verlag Heidelberg · Zbl 0973.62007
[29] Gediga, G.; Düntsch, I., Rough approximation quality revisited, Artificial intelligence, 132, 219-234, (2001) · Zbl 0983.68194
[30] G. Gediga, I. Düntsch, On model evaluation, indices of importance, and interaction values in rough set analysis, in: Pal et al. [87], pp. 251-276.
[31] Góra, G.; Wojna, A.G., RIONA: A new classification system combining rule induction and instance-based learning, Fundamenta informaticae, 51, 4, 369-390, (2002) · Zbl 1011.68114
[32] Greco, S.; Inuiguchi, M.; Słowiński, R., Fuzzy rough sets and multiple-premise gradual decision rules, International journal of approximate reasoning, 41, 2, 179-211, (2006) · Zbl 1093.68114
[33] Grzymała-Busse, J.W., Selected algorithms of machine learning from examples, Fundamenta informaticae, 18, 193-207, (1993) · Zbl 0781.68094
[34] Grzymała-Busse, J.W., Classification of unseen examples under uncertainty, Fundamenta informaticae, 30, 3-4, 255-267, (1997)
[35] Grzymała-Busse, J.W., A new version of the rule induction system LERS, Fundamenta informaticae, 31, 1, 27-39, (1997) · Zbl 0882.68122
[36] J.W. Grzymała-Busse, Three strategies to rule induction from data with numerical attributes, in: Peters et al. [95], pp. 54-62. · Zbl 1108.68611
[37] J.W. Grzymała-Busse, LERS - A data mining system, in: Maimon and Rokach [62], pp. 1347-1351.
[38] J.W. Grzymała-Busse, Rule induction, in: Maimon and Rokach [62], pp. 277-294.
[39] J.W. Grzymała-Busse, W.J. Grzymała-Busse, Handling missing attribute values, in: Maimon and Rokach [62], pp. 37-57. · Zbl 1156.68583
[40] Grzymała-Busse, J.W.; Ziarko, W., Data mining and rough set theory, Communications of the ACM, 43, 108-109, (2000)
[41] J. Herbert, J.T. Yao, Time-series data analysis with rough sets, in: Proceedings of the 4th International Conference on Computational Intelligence in Economics and Finance (CIEF’2005), Salt Lake City, UT, July 21-26, 2005, pp. 908-911.
[42] Hu, X.; Cercone, N., Learning in relational databases: a rough set approach, Computational intelligence: an international journal, 11, 2, 323-338, (1995)
[43] Hu, X.; Cercone, N., Data mining via discretization, generalization and rough set feature selection, Knowledge and information systems: an international journal, 1, 1, 33-60, (1999)
[44] Hu, X.; Cercone, N., Discovering maximal generalized decision rules through horizontal and vertical data reduction, Computational intelligence: an international journal, 17, 4, 685-702, (2001)
[45] Kim, D., Data classification based on tolerant rough set, Pattern recognition, 34, 8, 1613-1624, (2001) · Zbl 0984.68520
[46] Kim, D.; Bang, S.Y., A handwritten numeral character classification using tolerant rough set, IEEE transactions on pattern analysis and machine intelligence, 22, 9, 923-937, (2000)
[47] ()
[48] Komorowski, J.; Øhrn, A.; Skowron, A., Rosetta and other software systems for rough sets, (), 554-559
[49] R. Kowalski. A logic-based approach to conflict resolution. Report, Department of Computing, Imperial College, 2003, pp. 1-28. Available from: URL <http://www.doc.ic.ac.uk/ rak/papers/conflictresolution.pdf>.
[50] Kraus, S., Strategic negotiations in multiagent environments, (2001), The MIT Press Cambridge, MA · Zbl 1062.68099
[51] Kryszkiewicz, M.; Rybinski, H., Computation of reducts of composed information systems, Fundamenta informaticae, 27, 2-3, 183-195, (1996) · Zbl 0854.68097
[52] G. Lai, C. Li, K. Sycara, J.A. Giampapa. Literature review on multi-attribute negotiations. Technical Report CMU-RI-TR-04-66, 2004, pp. 1-35.
[53] Latkowski, R., On decomposition for incomplete data, Fundamenta informaticae, 54, 1, 1-16, (2003) · Zbl 1146.68460
[54] Latkowski, R., Flexible indiscernibility relations for missing attribute values, Fundamenta informaticae, 67, 1-3, 131-147, (2005) · Zbl 1096.68149
[55] J. Li, N. Cercone, A rough set based model to rank the importance of association rules, in: Śle¸zak et al. [121], pp. 109-118.
[56] Li, Y.; Shiu, S.C.-K.; Pal, S.K.; Liu, J.N.-K., A rough set-based case-based reasoner for text categorization, International journal of approximate reasoning, 41, 2, 229-255, (2006)
[57] ()
[58] Lingras, P., Fuzzy – rough and rough – fuzzy serial combinations in neurocomputing, Neurocomputing, 36, 1-4, 29-44, (2001) · Zbl 1003.68637
[59] Lingras, P., Unsupervised rough set classification using gas, Journal of intelligent information systems, 16, 3, 215-228, (2001) · Zbl 1016.68112
[60] Lingras, P.; West, C., Interval set clustering of web users with rough K-means, Journal of intelligent information systems, 23, 1, 5-16, (2004) · Zbl 1074.68586
[61] Y. Maeda, K. Senoo, H. Tanaka, Interval density function in conflict analysis, in: Skowron et al. [110], pp. 382-389.
[62] ()
[63] T.M. Mitchel, Machine Learning, McGraw-Hill Series in Computer Science, Boston, MA, 1999.
[64] P. Mitra, S. Mitra, S.K. Pal, Modular rough fuzzy mlp: evolutionary design, in: Skowron et al. [110], pp. 128-136.
[65] Mitra, P.; Pal, S.K.; Siddiqi, M.A., Non-convex clustering using expectation maximization algorithm with rough set initialization, Pattern recognition letters, 24, 6, 863-873, (2003) · Zbl 1053.68098
[66] A. Nakamura, Conflict logic with degrees, in: Pal and Skowron [88], pp. 136-150.
[67] M. Nakata, H. Sakai, Rough sets handling missing values probabilistically interpreted, in: Śle¸zak et al. [120], pp. 325-334. · Zbl 1134.68548
[68] H.S. Nguyen. Discretization of Real Value Attributes, Boolean Reasoning Approach. Ph.D. thesis, Warsaw University, Warsaw, Poland, 1997.
[69] Nguyen, H.S., From optimal hyperplanes to optimal decision trees, Fundamenta informaticae, 34, 1-2, 145-174, (1998) · Zbl 0903.68161
[70] Nguyen, H.S., Efficient SQL-learning method for data mining in large data bases, (), 806-811
[71] Nguyen, H.S., On efficient handling of continuous attributes in large data bases, Fundamenta informaticae, 48, 1, 61-81, (2001) · Zbl 0997.68037
[72] Nguyen, H.S.; Nguyen, S.H., Pattern extraction from data, Fundamenta informaticae, 34, 129-144, (1998) · Zbl 0903.68054
[73] Nguyen, H.S.; Nguyen, S.H., Rough sets and association rule generation, Fundamenta informaticae, 40, 4, 383-405, (1999) · Zbl 0946.68153
[74] H.S. Nguyen, A. Skowron, Quantization of real value attributes, in: Proceedings of the Second Joint Annual Conference on Information Sciences, Wrightsville Beach, NC, USA, 1995, pp. 34-37.
[75] H.S. Nguyen, D. Śle¸zak, Approximate reducts and association rules – correspondence and complexity results, in: Skowron et al. [110], pp. 137-145. · Zbl 0954.68129
[76] S.H. Nguyen, Regularity analysis and its applications in data mining, in: Polkowski et al. [98], pp. 289-378. · Zbl 0992.68049
[77] S.H. Nguyen, J. Bazan, A. Skowron, H.S. Nguyen, Layered learning for concept synthesis, in: Peters and Skowron [94], pp. 187-208. · Zbl 1104.68565
[78] S.H. Nguyen, H.S. Nguyen, Some efficient algorithms for rough set methods, in: Sixth International Conference on Information Processing and Management of Uncertainty on Knowledge Based Systems IPMU’1996, Granada, Spain, vol. III, 1996, pp. 1451-1456.
[79] T.T. Nguyen, Eliciting domain knowledge in handwritten digit recognition, in: Pal et al. [82], pp. 762-767.
[80] T.T. Nguyen, A. Skowron, Rough set approach to domain knowledge approximation, in: Wang et al. [131], pp. 221-228. · Zbl 1026.68644
[81] Nurmi, H.; Kacprzyk, J.; Fedrizzi, M., Theory and methodology: probabilistic, fuzzy and rough concepts in social choice, European journal of operational research, 95, 264-277, (1996) · Zbl 0943.90588
[82] ()
[83] Pal, S.K.; Dasgupta, B.; Mitra, P., Rough self organizing map, Applied intelligence, 21, 289-299, (2004) · Zbl 1101.68825
[84] Pal, S.K.; Mitra, P., Case generation using rough sets with fuzzy representation, IEEE transactions on knowledge and data engineering, 16, 3, 292-300, (2004)
[85] Pal, S.K.; Mitra, P., Pattern recognition algorithms for data mining, (2004), CRC Press Boca Raton, FL · Zbl 1099.68091
[86] S.K. Pal, W. Pedrycz, A. Skowron, R. Swiniarski (Eds.), Special Volume: Rough-neuro Computing, Neurocomputing, vol. 36, 2001.
[87] ()
[88] ()
[89] Pawlak, Z., Rough sets: theoretical aspects of reasoning about data, system theory, knowledge engineering and problem solving, vol. 9, (1991), Kluwer Academic Publishers Dordrecht, The Netherlands
[90] Pawlak, Z., An inquiry into anatomy of conflicts, Journal of information sciences, 109, 65-78, (1998)
[91] Z. Pawlak, A. Skowron, Rough sets: some extensions, Information Sciences, in press, doi:10.1016/j.ins.2006.06.006. · Zbl 1142.68550
[92] Z. Pawlak, A. Skowron, Rudiments of rough sets, Information Sciences, in press, doi:10.1016/j.ins.2006.06.003. · Zbl 1142.68549
[93] Z. Pawlak, L. Polkowski, A. Skowron, Rough sets and rough logic: a KDD perspective, in: Polkowski et al. [98], pp. 583-646. · Zbl 1009.68159
[94] ()
[95] ()
[96] Peters, J.F.; Skowron, A.; Suraj, Z., An application of rough set methods in control design, Fundamenta informaticae, 43, 1-4, 269-290, (2000) · Zbl 0971.93052
[97] Peters, J.F.; Suraj, Z.; Shan, S.; Ramanna, S.; Pedrycz, W.; Pizzi, N.J., Classification of meteorological volumetric radar data using rough set methods, Pattern recognition letters, 24, 6, 911-920, (2003)
[98] ()
[99] ()
[100] ()
[101] Quafafou, M.; Boussouf, M., Generalized rough sets based feature selection, Intelligent data analysis, 4, 1, 3-17, (2000) · Zbl 1055.68560
[102] Roy, A.; Pal, S.K., Fuzzy discretization of feature space for a rough set classifier, Pattern recognition letters, 24, 6, 895-902, (2003) · Zbl 1053.68091
[103] Sever, H.; Raghavan, V.V.; Johnsten, T.D., The status of research on rough sets for knowledge discovery in databases, (), 673-680
[104] Shan, N.; Ziarko, W., An incremental learning algorithm for constructing decision rules, (), 326-334 · Zbl 0941.68698
[105] Skowron, A., Synthesis of adaptive decision systems from experimental data, (), 220-238
[106] Skowron, A., Rough sets in KDD - plenary talk, (), 1-14
[107] Skowron, A., Rough sets and Boolean reasoning, (), 95-124 · Zbl 0986.68143
[108] Skowron, A., Approximate reasoning in distributed environments, (), 433-474
[109] Skowron, A.; Nguyen, H.S., Boolean reasoning scheme with some applications in data mining, (), 107-115
[110] ()
[111] A. Skowron, S.K. Pal (Eds.), Special volume: Rough sets, pattern recognition and data mining, Pattern Recognition Letters, vol. 24 (6), 2003.
[112] Skowron, A.; Pawlak, Z.; Komorowski, J.; Polkowski, L., A rough set perspective on data and knowledge, (), 134-149
[113] A. Skowron, J. Peters, Rough sets: trends and challenges, in: Wang et al. [131], pp. 25-34 (plenary talk). · Zbl 1026.68653
[114] Skowron, A.; Rauszer, C., The discernibility matrices and functions in information systems, (), 331-362
[115] A. Skowron, J. Stepaniuk, Information granules and rough-neural computing, in: Pal et al. [87], pp. 43-84.
[116] A. Skowron, J. Stepaniuk, Ontological framework for approximation, in: Śle¸zak et al. [120], pp. 718-727. · Zbl 1134.68514
[117] Śle¸zak, D., Association reducts: a framework for mining multi-attribute dependencies, (), 354-363 · Zbl 1132.68592
[118] D. Śle¸zak, Various approaches to reasoning with frequency-based decision reducts: a survey, in: Polkowski et al. [98], pp. 235-285.
[119] Śle¸zak, D., Approximate entropy reducts, Fundamenta informaticae, 53, 365-387, (2002) · Zbl 1092.68676
[120] ()
[121] ()
[122] J. Stepaniuk, Knowledge discovery by application of rough set models, in: Polkowski et al. [98], pp. 137-233. · Zbl 0992.68199
[123] Z. Suraj, Rough set methods for the synthesis and analysis of concurrent processes, in: Polkowski et al. [98], pp. 379-488. · Zbl 0992.68201
[124] R. Swiniarski, Rough sets and principal component analysis and their applications. data model building and classification, in: Pal and Skowron [88], pp. 275-300.
[125] R. Swiniarski, An application of rough sets and Haar wavelets to face recognition, in: Ziarko and Yao [137], pp. 561-568. · Zbl 1013.68261
[126] R. Swiniarski, L. Hargis, A new halftoning method based on error diffusion with rough set filterin, in: Polkowski and Skowron [100], pp. 336-342.
[127] Swiniarski, R.; Skowron, A., Rough set methods in feature selection and extraction, Pattern recognition letters, 24, 6, 833-849, (2003) · Zbl 1053.68093
[128] R.W. Swiniarski, A. Skowron, Independent component analysis, principal component analysis and rough sets in face recognition, in: Peters and Skowron [94], pp. 392-404. · Zbl 1104.68772
[129] Sycara, K., Multiagent systems, AI magazine, 79-92, (1998)
[130] Tsumoto, S.; Tanaka, H., PRIMEROSE: probabilistic rule induction method based on rough sets and resampling methods, Computational intelligence: an international journal, 11, 389-405, (1995)
[131] ()
[132] Wang, J.; Jia, C.; Zhao, K., Investigation on AQ11, ID3 and the principle of discernibility matrix, Journal of computer science and technology, 16, 1, 1-12, (2001) · Zbl 0974.68175
[133] Wojna, A., Analogy based reasoning in classifier construction, (), 277-374 · Zbl 1136.68508
[134] Wróblewski, J., Theoretical foundations of order-based genetic algorithms, Fundamenta informaticae, 28, 423-430, (1996) · Zbl 0866.68043
[135] J. Wróblewski, Analyzing relational databases using rough set based methods, in: Eighth International Conference on Processing and Management of Uncertainty in Knowledge-Based Systems IPMU. Madrid, Spain, vol. I, 2000, pp. 256-262.
[136] J. Wróblewski, Adaptive aspects of combining approximation spaces, in: Pal et al. [87], pp. 139-156.
[137] ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.