×

Adaptive controller design for modified projective synchronization of Genesio-Tesi chaotic system with uncertain parameters. (English) Zbl 1142.93428

Summary: The paper addresses control problem for the modified projective synchronization of the Genesio-Tesi chaotic systems with three uncertain parameters. An adaptive control law is derived to make the states of two identical Genesio-Tesi systems asymptotically synchronized up to specific ratios. The stability analysis in the paper is proved using a well-known Lyapunov stability theory. A numerical simulation is presented to show the effectiveness of the proposed chaos synchronization scheme.

MSC:

93D21 Adaptive or robust stabilization
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fujisaka, H.; Yamada, T., Stability theory of synchronized motion in coupled-oscillator systems, Progr Theor Phys, 69, 32-47 (1983) · Zbl 1171.70306
[2] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys Rev Lett, 64, 821-824 (1990) · Zbl 0938.37019
[3] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Phys Rev Lett, 64, 1196-1199 (1990) · Zbl 0964.37501
[4] Lu, H.; He, Z., Chaotic behavior in first-order autonomous continuous-time systems with delay, IEEE Trans Circuit Syst, 43, 700-702 (1996)
[5] Chen, G., Chaos on some controllability conditions for chaotic dynamics control, Chaos, Solitons & Fractals, 8, 1461-1470 (1997)
[6] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys Lett A, 170, 421-428 (1992)
[7] Park, J. H.; Kwon, O. M., LMI optimization approach to stabilization of time-delay chaotic systems, Chaos, Solitons & Fractals, 23, 445-450 (2005) · Zbl 1061.93509
[8] Lu, J.; Wu, X.; Lü, J., Synchronization of a unified chaotic system and the application in secure communication, Phys Lett A, 305, 365-370 (2002) · Zbl 1005.37012
[9] Wang, C. C.; Su, J. P., A new adaptive variable structure control for chaotic synchronization and secure communication, Chaos, Solitons & Fractals, 20, 967-977 (2004) · Zbl 1050.93036
[10] Park, J. H., Chaos synchronization of between two different chaotic dynamical systems, Chaos, Solitons & Fractals, 27, 549-554 (2006) · Zbl 1102.37304
[11] Park, J. H., Chaos synchronization of nonlinear Bloch equations, Chaos, Solitons & Fractals, 27, 357-361 (2006) · Zbl 1091.93029
[12] Park, J. H., Adaptive synchronization of hyperchaotic Chen system with uncertain parameters, Chaos, Solitons & Fractals, 26, 959-964 (2005) · Zbl 1093.93537
[13] Park, J. H., Adaptive synchronization of Rossler system with uncertain parameters, Chaos, Solitons & Fractals, 25, 333-338 (2005) · Zbl 1125.93470
[14] Park, J. H., Adaptive synchronization of a four-dimensional chaotic system with uncertain parameters, Int J Non Sci Numer Simul, 6, 305-310 (2005) · Zbl 1401.93124
[15] Park, J. H., Adaptive synchronization of a unified chaotic systems with an uncertain parameter, Int J Non Sci Numer Simul, 6, 201-206 (2005) · Zbl 1401.93123
[16] Wu, X.; Lu, J., Parameter identification and backstepping control of uncertain Lü system, Chaos, Solitons & Fractals, 18, 721-729 (2003) · Zbl 1068.93019
[17] Li, D.; Lu, J. A.; Wu, X., Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems, Chaos, Solitons & Fractals, 23, 79-85 (2005) · Zbl 1063.37030
[18] Lü, J.; Zhou, T.; Zhang, S., Chaos synchronization between linearly coupled chaotic systems, Chaos, Solitons & Fractals, 14, 529-541 (2002) · Zbl 1067.37043
[19] Park, J. H., Stability criterion for synchronization of linearly coupled unified chaotic systems, Chaos, Solitons & Fractals, 23, 1319-1325 (2005) · Zbl 1080.37035
[20] Agiza, H. N.; Yassen, M. T., Synchronization of Rossler and Chen chaotic dynamical systems using active control, Phys Lett A, 278, 191-197 (2001) · Zbl 0972.37019
[21] Wang, Y.; Guan, Z. H.; Wang, H. O., Feedback an adaptive control for the synchronization of Chen system via a single variable, Phys Lett A, 312, 34-40 (2003) · Zbl 1024.37053
[22] Bai, E. W.; Lonngren, K. E., Sequential synchronization of two Lorenz systems using active control, Chaos, Solitons & Fractals, 11, 1041-1044 (2000) · Zbl 0985.37106
[23] Lu, J.; Wu, X.; Han, X.; Lü, J., Adaptive feedback synchronization of a unified chaotic system, Phys Lett A, 329, 327-333 (2004) · Zbl 1209.93119
[24] Yang, X. S.; Chen, G., Some observer-based criteria for discrete-time generalized chaos synchronization, Chaos, Solitons & Fractals, 13, 1303-1308 (2002) · Zbl 1006.93580
[25] Rulkov, N. F.; Sushchik, M. M.; Tsimring, L. S.; Abarbanel, H. D.I., Generalized synchronization of chaos in directionally coupled chaotic systems, Phys Rev E, 51, 980-994 (1995)
[26] Wang, Y. W.; Guan, Z. H., Generalized synchronization of continuous chaotic systems, Chaos, Solitons & Fractals, 27, 97-101 (2006) · Zbl 1083.37515
[27] Li GH. Generalized projective synchronization between Lorenz system and Chen’s system. Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.2005.11.073; Li GH. Generalized projective synchronization between Lorenz system and Chen’s system. Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.2005.11.073
[28] Li GH. Modified projective synchronization of chaotic system. Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.2005.12.009; Li GH. Modified projective synchronization of chaotic system. Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.2005.12.009 · Zbl 1134.37331
[29] Huang, L.; Feng, R.; Wang, M., Synchronization of chaotic systems via nonlinear control, Phys Lett A, 320, 271-275 (2004) · Zbl 1065.93028
[30] Chen, M.; Han, Z., Controlling and synchronizing chaotic Genesio system via nonlinear feedback control, Chaos, Solitons & Fractals, 17, 709-716 (2003) · Zbl 1044.93026
[31] Genesio, R.; Tesi, A., A harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems, Automatica, 28, 531-548 (1992) · Zbl 0765.93030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.