×

A priori bounds, nodal equilibria and connecting orbits in indefinite superlinear parabolic problems. (English) Zbl 1143.37049

It is considered the parabolic problem \(u_t-\Delta u=\lambda u+a(x)g(u)+h(x,u)\), \(x\in\Omega\), \(t>0\); \(u=0\), \(x\in\partial\Omega\), \(t>0\), \(u(x,0)=u_0(x)\) on a smooth bounded domain \(\Omega\in\mathbb{R}^n\), \(a(x)\in L^\infty(\Omega)\), \(\lambda\in\mathbb{R}\), \(g\in C^1(\mathbb{R},\mathbb{R})\), \(g(0)=0\) is superlinear and subcritical, \(h:\Omega\times\mathbb{R}\to\mathbb{R}\), \(h(\cdot,0)=0\), has at most linear growth in \(u\in\mathbb{R}\), \(| u| \to\infty\). New a priori bounds for global semiorbits are obtained, that allow to derive known and new existence results for equilibria and prove the existence of connecting orbits. Also much information on nodal properties of equilibria is obtained.

MSC:

37L05 General theory of infinite-dimensional dissipative dynamical systems, nonlinear semigroups, evolution equations
35K20 Initial-boundary value problems for second-order parabolic equations
35K55 Nonlinear parabolic equations
37L10 Normal forms, center manifold theory, bifurcation theory for infinite-dimensional dissipative dynamical systems
47H20 Semigroups of nonlinear operators
Full Text: DOI

References:

[1] Nils Ackermann and Thomas Bartsch, Superstable manifolds of semilinear parabolic problems, J. Dynam. Differential Equations 17 (2005), no. 1, 115 – 173. · Zbl 1129.35428 · doi:10.1007/s10884-005-3144-z
[2] Stanley Alama and Manuel Del Pino, Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), no. 1, 95 – 115 (English, with English and French summaries). · Zbl 0851.35037
[3] Stanley Alama and Gabriella Tarantello, On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. Partial Differential Equations 1 (1993), no. 4, 439 – 475. · Zbl 0809.35022 · doi:10.1007/BF01206962
[4] Herbert Amann, Linear and quasilinear parabolic problems. Vol. I, Monographs in Mathematics, vol. 89, Birkhäuser Boston, Inc., Boston, MA, 1995. Abstract linear theory. · Zbl 0819.35001
[5] H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations 146 (1998), no. 2, 336 – 374. · Zbl 0909.35044 · doi:10.1006/jdeq.1998.3440
[6] H. Amann and P. Quittner, Optimal control problems with final observation governed by explosive parabolic equations, SIAM J. Control Optim. 44 (2005), no. 4, 1215 – 1238. · Zbl 1110.49004 · doi:10.1137/S0363012903433450
[7] José M. Arrieta, Alexandre N. Carvalho, and Anibal Rodríguez-Bernal, Parabolic problems with nonlinear boundary conditions and critical nonlinearities, J. Differential Equations 156 (1999), no. 2, 376 – 406. · Zbl 0938.35077 · doi:10.1006/jdeq.1998.3612
[8] Thomas Bartsch, Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal. 186 (2001), no. 1, 117 – 152. · Zbl 1211.58003 · doi:10.1006/jfan.2001.3789
[9] T. Bartsch, K.-C. Chang, and Z.-Q. Wang, On the Morse indices of sign changing solutions of nonlinear elliptic problems, Math. Z. 233 (2000), no. 4, 655 – 677. · Zbl 0946.35023 · doi:10.1007/s002090050492
[10] Thomas Bartsch and Zhi-Qiang Wang, On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal. 7 (1996), no. 1, 115 – 131. · Zbl 0903.58004
[11] Thomas Bartsch and Tobias Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations, Topol. Methods Nonlinear Anal. 22 (2003), no. 1, 1 – 14. · Zbl 1094.35041 · doi:10.12775/TMNA.2003.025
[12] Peter W. Bates and Christopher K. R. T. Jones, Invariant manifolds for semilinear partial differential equations, Dynamics reported, Vol. 2, Dynam. Report. Ser. Dynam. Systems Appl., vol. 2, Wiley, Chichester, 1989, pp. 1 – 38. · Zbl 0674.58024
[13] H. Berestycki, I. Capuzzo-Dolcetta, and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal. 4 (1994), no. 1, 59 – 78. · Zbl 0816.35030
[14] Henri Berestycki, Italo Capuzzo-Dolcetta, and Louis Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA Nonlinear Differential Equations Appl. 2 (1995), no. 4, 553 – 572. · Zbl 0840.35035 · doi:10.1007/BF01210623
[15] Haïm Brezis and Thierry Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277 – 304. · Zbl 0868.35058 · doi:10.1007/BF02790212
[16] Thierry Cazenave and Pierre-Louis Lions, Solutions globales d’équations de la chaleur semi linéaires, Comm. Partial Differential Equations 9 (1984), no. 10, 955 – 978 (French). · Zbl 0555.35067 · doi:10.1080/03605308408820353
[17] Kung-ching Chang, Infinite-dimensional Morse theory and multiple solution problems, Progress in Nonlinear Differential Equations and their Applications, vol. 6, Birkhäuser Boston, Inc., Boston, MA, 1993. · Zbl 0779.58005
[18] Kung-Ching Chang and Mei-Yue Jiang, Dirichlet problem with indefinite nonlinearities, Calc. Var. Partial Differential Equations 20 (2004), no. 3, 257 – 282. · Zbl 1142.35378 · doi:10.1007/s00526-003-0236-7
[19] Wenxiong Chen and Congming Li, Indefinite elliptic problems in a domain, Discrete Contin. Dynam. Systems 3 (1997), no. 3, 333 – 340. · Zbl 0948.35054 · doi:10.3934/dcds.1997.3.333
[20] E. N. Dancer and Yihong Du, The generalized Conley index and multiple solutions of semilinear elliptic problems, Abstr. Appl. Anal. 1 (1996), no. 1, 103 – 135. · Zbl 0933.35069 · doi:10.1155/S108533759600005X
[21] Yihong Du and Shujie Li, Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations, Adv. Differential Equations 10 (2005), no. 8, 841 – 860. · Zbl 1161.35388
[22] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), no. 8, 883 – 901. · Zbl 0462.35041 · doi:10.1080/03605308108820196
[23] Yoshikazu Giga, A bound for global solutions of semilinear heat equations, Comm. Math. Phys. 103 (1986), no. 3, 415 – 421. · Zbl 0595.35057
[24] Yoshikazu Giga, Shin’ya Matsui, and Satoshi Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J. 53 (2004), no. 2, 483 – 514. · Zbl 1058.35096 · doi:10.1512/iumj.2004.53.2401
[25] M. Grossi, P. Magrone, and M. Matzeu, Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth, Discrete Contin. Dynam. Systems 7 (2001), no. 4, 703 – 718. · Zbl 1021.35030 · doi:10.3934/dcds.2001.7.703
[26] Helmut Hofer, A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem, J. London Math. Soc. (2) 31 (1985), no. 3, 566 – 570. · Zbl 0573.58007 · doi:10.1112/jlms/s2-31.3.566
[27] M. A. Krasnosel’skii, Topological methods in the theory of nonlinear integral equations, Translated by A. H. Armstrong; translation edited by J. Burlak. A Pergamon Press Book, The Macmillan Co., New York, 1964.
[28] Howard A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form \?\?_{\?}=-\?\?+\Cal F(\?), Arch. Rational Mech. Anal. 51 (1973), 371 – 386. · Zbl 0278.35052 · doi:10.1007/BF00263041
[29] Shujie Li and Zhi-Qiang Wang, Mountain pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet problems, J. Anal. Math. 81 (2000), 373 – 396. · Zbl 0962.35065 · doi:10.1007/BF02788997
[30] Shu Jie Li and Michel Willem, Applications of local linking to critical point theory, J. Math. Anal. Appl. 189 (1995), no. 1, 6 – 32. · Zbl 0820.58012 · doi:10.1006/jmaa.1995.1002
[31] Julián López-Gómez and Pavol Quittner, Complete and energy blow-up in indefinite superlinear parabolic problems, Discrete Contin. Dyn. Syst. 14 (2006), no. 1, 169 – 186. · Zbl 1114.35093
[32] Paola Magrone, On a class of semilinear elliptic equations with potential changing sign, Dynam. Systems Appl. 9 (2000), no. 4, 459 – 467. · Zbl 1014.35033
[33] M. Marcus and L. Véron, Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), no. 2, 237 – 274 (English, with English and French summaries). · Zbl 0877.35042 · doi:10.1016/S0294-1449(97)80146-1
[34] Hiroshi Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), no. 3, 645 – 673. · Zbl 0545.35042
[35] Jean Mawhin and Michel Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, vol. 74, Springer-Verlag, New York, 1989. · Zbl 0676.58017
[36] Wei-Ming Ni, Paul E. Sacks, and John Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differential Equations 54 (1984), no. 1, 97 – 120. · Zbl 0565.35053 · doi:10.1016/0022-0396(84)90145-1
[37] Richard S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1 – 16. · Zbl 0138.18302 · doi:10.1016/0040-9383(66)90002-4
[38] Pavol Quittner, Global existence of solutions of parabolic problems with nonlinear boundary conditions, Singularities and differential equations (Warsaw, 1993) Banach Center Publ., vol. 33, Polish Acad. Sci. Inst. Math., Warsaw, 1996, pp. 309 – 314. · Zbl 0865.35067
[39] P. Quittner, A priori bounds for global solutions of a semilinear parabolic problem, Acta Math. Univ. Comenian. (N.S.) 68 (1999), no. 2, 195 – 203. · Zbl 0940.35112
[40] Pavol Quittner, Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston J. Math. 29 (2003), no. 3, 757 – 799. · Zbl 1034.35013
[41] Pavol Quittner, Multiple equilibria, periodic solutions and a priori bounds for solutions in superlinear parabolic problems, NoDEA Nonlinear Differential Equations Appl. 11 (2004), no. 2, 237 – 258. · Zbl 1058.35120 · doi:10.1007/s00030-003-1056-3
[42] Miguel Ramos, Susanna Terracini, and Christophe Troestler, Superlinear indefinite elliptic problems and Pohožaev type identities, J. Funct. Anal. 159 (1998), no. 2, 596 – 628. · Zbl 0937.35060 · doi:10.1006/jfan.1998.3332
[43] Krzysztof P. Rybakowski, The homotopy index and partial differential equations, Universitext, Springer-Verlag, Berlin, 1987. · Zbl 0628.58006
[44] Fred B. Weissler, Semilinear evolution equations in Banach spaces, J. Funct. Anal. 32 (1979), no. 3, 277 – 296. · Zbl 0419.47031 · doi:10.1016/0022-1236(79)90040-5
[45] Michel Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.