×

Uniform approximation by discrete least squares polynomials. (English) Zbl 1145.41001

Citing the paper by L. Reichel [BIT 26, 349–368 (1986; Zbl 0606.65008)] as perhaps the only exception the authors observe that the method of using discrete least squares approximation polynomials for differentiable or holomorphic functions does not seem to have attracted much attention from approximation theorists. The authors study here uniform approximation of differentiable or analytic functions of one or several variables on a compact set by a sequence of discrete least squares polynomials.

MSC:

41A10 Approximation by polynomials
41A63 Multidimensional problems

Citations:

Zbl 0606.65008
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Altun, M.; Goncharov, A., A local version of the Pawłucki-Pleśniak extension operator, J. Approx. Theory, 132, 1, 34-41 (2005) · Zbl 1075.46022
[2] Bagby, T.; Bos, L.; Levenberg, N., Multivariate simultaneous approximation, Constr. Approx., 18, 4, 569-577 (2002) · Zbl 1025.41002
[3] Bagby, T.; Levenberg, N., Bernstein theorems for elliptic equations, J. Approx. Theory, 78, 2, 190-212 (1994) · Zbl 0803.35032
[4] Baran, M., Bernstein type theorems for compact sets in \(R^n\) revisited, J. Approx. Theory, 79, 2, 190-198 (1994) · Zbl 0819.41013
[5] Baran, M., Markov inequality on sets with polynomial parametrization, Ann. Polon. Math., 60, 1, 69-79 (1994) · Zbl 0824.41014
[6] Baran, M.; Pleśniak, W., Markov’s exponent of compact sets in \(C^n\), Proc. Amer. Math. Soc., 123, 9, 2785-2791 (1995) · Zbl 0841.41011
[7] Bloom, T.; Calvi, J.-P., The distribution of extremal points for Kergin interpolation: real case, Ann. Inst. Fourier (Grenoble), 48, 1, 205-222 (1998) · Zbl 0915.41001
[8] Bos, L.; Caliari, M.; De Marchi, S.; Vianello, M.; Xu, Y., Bivariate Lagrange interpolation at the Padua points: the generating curve approach, J. Approx. Theory, 143, 1, 15-25 (2006) · Zbl 1113.41001
[9] Caliari, M.; De Marchi, S.; Vianello, M., Bivariate polynomial interpolation on the square at new nodal sets, Appl. Math. Comput., 165, 2, 261-274 (2005) · Zbl 1081.41001
[10] Carleson, L.; Totik, V., Hölder continuity of Green’s functions, Acta Sci. Math. (Szeged), 70, 3-4, 557-608 (2004) · Zbl 1076.30026
[11] E.W. Cheney, Introduction to Approximation Theory, AMS Chelsea Publishing, Providence, RI, 1998. Reprint of the second (1982) edition.; E.W. Cheney, Introduction to Approximation Theory, AMS Chelsea Publishing, Providence, RI, 1998. Reprint of the second (1982) edition. · Zbl 0912.41001
[12] M. Je¸drzejowski, Markov inequality on a certain compact of \(\mathbf{R}^2\); M. Je¸drzejowski, Markov inequality on a certain compact of \(\mathbf{R}^2\)
[13] Klimek, M., Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6 (1991), The Clarendon Press, Oxford University Press, Oxford Science Publications: The Clarendon Press, Oxford University Press, Oxford Science Publications New York · Zbl 0742.31001
[14] Kroó, A.; Révész, S., On Bernstein and Markov-type inequalities for multivariate polynomials on convex bodies, J. Approx. Theory, 99, 1, 134-152 (1999) · Zbl 0952.41012
[15] B. Malgrange, Ideals of Differentiable Functions, Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Tata Institute of Fundamental Research, Bombay, 1967.; B. Malgrange, Ideals of Differentiable Functions, Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Tata Institute of Fundamental Research, Bombay, 1967. · Zbl 0177.17902
[16] Pawłucki, W.; Pleśniak, W., Markov’s inequality and \(C^\infty\) functions on sets with polynomial cusps, Math. Ann., 275, 3, 467-480 (1986) · Zbl 0579.32020
[17] Pawłucki, W.; Pleśniak, W., Extension of \(C^\infty\) functions from sets with polynomial cusps, Studia Math., 88, 3, 279-287 (1988) · Zbl 0778.26010
[18] Pleśniak, W., Quasianalytic functions in the sense of Bernstein, Dissertationes Math. (Rozprawy Mat.), 147, 66 (1977) · Zbl 0359.32003
[19] Pleśniak, W., Markov’s inequality and the existence of an extension operator for \(C^\infty\) functions, J. Approx. Theory, 61, 1, 106-117 (1990) · Zbl 0702.41023
[20] Quarteroni, A.; Sacco, R.; Saleri, F., Numerical Mathematics, Texts in Applied Mathematics, vol. 37 (2000), Springer: Springer New York · Zbl 0943.65001
[21] Reichel, L., On polynomial approximation in the uniform norm by the discrete least squares method, BIT, 26, 3, 349-368 (1986) · Zbl 0606.65008
[22] Reichel, L., Construction of polynomials that are orthogonal with respect to a discrete bilinear form, Adv. Comput. Math., 1, 2, 241-258 (1993) · Zbl 0824.65007
[23] Sarantopoulos, Y., Bounds on the derivatives of polynomials on Banach spaces, Math. Proc. Cambridge Philos. Soc., 110, 2, 307-312 (1991) · Zbl 0761.46035
[24] Siciak, J., On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc., 105, 322-357 (1962) · Zbl 0111.08102
[25] Siciak, J., Extremal plurisubharmonic functions in \(C^n\), Ann. Polon. Math., 39, 175-211 (1981) · Zbl 0477.32018
[26] Siciak, J., Highly noncontinuable functions on polynomially convex sets, Univ. Iagel. Acta Math. (, 25), 95-107 (1985) · Zbl 0585.32012
[27] Toókos, F.; Totik, V., Markov inequality and Green functions, Rend. Circ. Mat. Palermo math. 2 Suppl., 76, 91-102 (2005) · Zbl 1136.41305
[28] Totik, V., Markoff constants for Cantor sets, Acta Sci. Math. (Szeged), 60, 3-4, 715-734 (1995) · Zbl 0846.41012
[29] Wilhelmsen, D. R., A Markov inequality in several dimensions, J. Approx. Theory, 11, 216-220 (1974) · Zbl 0287.26016
[30] Xu, Y., On discrete orthogonal polynomials of several variables, Adv. in Appl. Math., 33, 3, 615-632 (2004) · Zbl 1069.33011
[31] A Zériahi, Inegalités de Markov et développement en série de polynômes orthogonaux des fonctions \(C^{\infty;} A^{\infty;}\); A Zériahi, Inegalités de Markov et développement en série de polynômes orthogonaux des fonctions \(C^{\infty;} A^{\infty;}\) · Zbl 0788.47023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.