×

An approach for identification of uncertain Wiener systems. (English) Zbl 1145.93432

Summary: As reported in the literature, Wiener models have arisen as an appealing proposal for nonlinear process representation due to their simplicity and their property of being valid over a larger operating region than a LTI model. These models consist of a cascade connection of a linear time invariant system and a static nonlinearity. In the description of these models, there are several ways to represent the linear and the nonlinear blocks, and several approaches can be found in the literature to perform the identification process.
In this article, we provide a parametric description for the Wiener system. This approach allows us to describe the uncertainty as a set of parameters. The proposed algorithm is illustrated through a pH neutralization process.

MSC:

93E12 Identification in stochastic control theory
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Pottmann, M.; Pearson, R. K., Block-oriented NARMAX models \(i\) th output multiplicities, AIChE J., 44, 1, 131-140 (1998)
[2] Pearson, R. K.; Pottmann, M., Gray-box identification of block-oriented nonlinear models, J. Process Contr., 10, 4, 301-315 (2000)
[3] Kalafatis, A.; Arifin, N.; Wang, L.; Cluett, W. R., A new approach to the identification of pH processes based on Wiener model, Chem. Eng. Sci., 50, 23, 3693-3701 (1995)
[4] Pajunen, G. A., Adaptive control of winer type nonlinear systems, Automatica, 28, 4, 781-785 (1992) · Zbl 0765.93042
[5] Y. Zhu, Distillation column identification for control using Wiener model, in: Proc. American Control Conference, San Diego, California, 1999, pp. 3462-3466; Y. Zhu, Distillation column identification for control using Wiener model, in: Proc. American Control Conference, San Diego, California, 1999, pp. 3462-3466
[6] M.J. Korenberg, Identification of biological cascades of linear and static nonlinear systems, in: 16th. Proc. IEEE Midwest Symposium on Circuit Theory, New York, 1973, pp. 1-9; M.J. Korenberg, Identification of biological cascades of linear and static nonlinear systems, in: 16th. Proc. IEEE Midwest Symposium on Circuit Theory, New York, 1973, pp. 1-9
[7] Hunter, I. W.; Korenberg, M. J., The identification of nonlinear biological systems: Wiener and Hammerstein cascade models, Biol. Cybern., 55, 2-3, 135-144 (1986) · Zbl 0611.92002
[8] Tian, C.; Fujii, T., Nonlinear system identification of rapid thermal processing, Control Eng. Pract., 13, 6, 681-687 (2005)
[9] Norquay, S. J.; Palazoglu, A.; Romagnoli, J. A., Model predictive control based on Wiener models, Chem. Eng. Sci., 53, 1, 75-84 (1998)
[10] Gerkšič, S.; Juričic, D.; Strmčnic, S.; Matko, D., Wiener model based nonlinear predictive control, Internat. J. Systems Sci., 31, 2, 189-202 (2000) · Zbl 1080.93544
[11] Lussón Cervantes, A.; Agamennoni, O. E.; Figueroa, J. L., A nonlinear model predictive control scheme based on Wiener piecewise linear models, J. Process Contr., 13, 7, 655-666 (2003)
[12] Biagiola, S. I.; Agamennoni, O. E.; Figueroa, J. L., \(H_\infty\) control of a Wiener type system, Internat. J. Control, 77, 6, 572-583 (2004) · Zbl 1059.93035
[13] Wigren, T., Recursive prediction error identification using the nonlinear Wiener model, Automatica, 29, 4, 1011-1025 (1993) · Zbl 0776.93006
[14] Wigren, T., Convergence analysis of recursive identification algorithms based on the nonlinear Wiener model, IEEE Trans. Automat. Control, 38, 11, 2191-2206 (1994) · Zbl 0814.93074
[15] Wigren, T., Output error convergence of adaptive filters with compensation for output nonlinearities, IEEE Trans. Automat. Control, 43, 7, 975-978 (1998) · Zbl 0952.93128
[16] Figueroa, J. L.; Cousseau, J. E.; de Figueiredo, R. J.P., A simplicial canonical piecewise linear adaptive filter, Circuits System Signal Processing, 23, 5, 365-386 (2004) · Zbl 1076.93040
[17] Kalafatis, A. D.; Wang, L.; Cluett, W. R., Identification of Wiener-type nonlinear systems in a noisy environment, Internat. J. Control, 66, 6, 923-941 (1997) · Zbl 0875.93079
[18] Bruls, J.; Chou, C. T.; Haverkamp, B. R.J.; Verhaegen, M., Linear and non-linear system identification using separable least-squares, Eur. J. Control, 5, 1, 116-128 (1999) · Zbl 0951.93020
[19] Westwick, D.; Verhaegen, M., Identifying MIMO Wiener systems using subspace model identifications methods, Signal Process., 52, 2, 235-258 (1996) · Zbl 0875.93093
[20] Gómez, J. C.; Baeyens, E., Identification of block-oriented nonlinear systems using orthonormal bases, J. Process Contr., 14, 6, 685-697 (2004)
[21] A. Hagenblad, Aspect of the Identification of Wiener Models, Ph.D. Thesis, Linköping Universitet, Sweden, 1999; A. Hagenblad, Aspect of the Identification of Wiener Models, Ph.D. Thesis, Linköping Universitet, Sweden, 1999
[22] Billings, S.; Fakhouri, S., Identification of nonlinear systems using the correlation techniques, Proc. IEE, 125, 691-697 (1978)
[23] Greblicki, W., Nonparametric identification of Wiener systems by orthogonal series, IEEE Transaction on Automatic Control, 39, 10, 2077-2086 (1994) · Zbl 0824.93068
[24] Narendra, K. S.; Gallman, P. G., An iterative method for the identification of nonlinear systems using a Hammerstein model, IEEE Trans. Automat. Control, AC-11, 3, 546-550 (1966)
[25] Bai, E., An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems, Automatica, 34, 3, 333-338 (1998) · Zbl 0915.93018
[26] Chua, L. O.; Kang, S., Section-wise piecewise-linear functions: Canonical representation, properties and applications, Proc. IEEE, 65, 915-929 (1977)
[27] Güzelis, G.; Göknar, I., A canonical representation for piecewise affine maps and its applications to circuit analysis, IEEE Trans. Circuits Syst. I, 38, 1342-1354 (1991) · Zbl 0739.94019
[28] Kahlert, C.; Chua, L. O., A generalized canonical piecewise-linear representation, IEEE Trans. Circuits Syst. I, 37, 373-383 (1990) · Zbl 0704.94026
[29] Lin, J. N.; Xu, H.; Unbehahuen, R., A generalization of canonical piecewise-linear functions, IEEE Trans. Circuits Syst. I, 41, 345-347 (1994)
[30] Meijer, P. B., Fast and smooth highly nonlinear multidimensional table models for device modeling, IEEE Trans. Circuits Syst. I, 37, 335-346 (1990)
[31] Chua, L. O.; Hasler, M.; Neirynck, J., Dynamics of a piecewise-linear resonant circuit, IEEE Trans. Circuits Syst., 29, 8, 535-546 (1982) · Zbl 0496.94013
[32] Mestl, T.; Plahte, E.; Omholt, S. W., Periodic solutions in systems of piecewise-linear differential equations, Dynam. Stabil. Syst., 10, 179-193 (1995) · Zbl 0833.34027
[33] Chua, L. O.; Deng, A., Canonical piecewise-linear modeling, IEEE Trans. Circuits, Syst. I, CAS-33, 511-525 (1986)
[34] Julián, P.; Desages, A.; DAmico, B., Orthonormal high-level canonical PWL functions with applications to model reduction, IEEE Trans. Circuits Syst. Part I, 47, 5, 702-712 (2000)
[35] Grancharova, A.; Johansen, T.; Kocijan, J., Explicit model predictive control of gas-liquid separation plant via orthogonal search tree partitioning, Computers and Chemical Engineering, 28, 2481-2491 (2004)
[36] Julián, P.; Jordán, M.; Desages, A., Canonical piecewise linear approximation of smooth functions, IEEE Trans. Circuits Syst. I, 45, 567-571 (1996) · Zbl 0915.41014
[37] P. Mundkur, R.J.P. de Figueiredo, Scaled simplicial approximation for inversion of Gaussian RBF expansions, in: Proc. of the 2001 IEEE International Symposium on Circuits and Systems, vol. 69 (3) 2001, pp. 89-92; P. Mundkur, R.J.P. de Figueiredo, Scaled simplicial approximation for inversion of Gaussian RBF expansions, in: Proc. of the 2001 IEEE International Symposium on Circuits and Systems, vol. 69 (3) 2001, pp. 89-92
[38] Wahlberg, B., System identification using Laguerre models, IEEE Trans. Automat. Control, 36, 5, 551-562 (1991) · Zbl 0738.93078
[39] Wahlberg, B., System identification using Kautz models, IEEE Trans. Automat. Control, 39, 6, 1276-1282 (1994) · Zbl 0807.93065
[40] P. Lindskog, Methods, Algorithms and Tools for System Identification Based on Prior Knowledge, Ph.D. Thesis, Linköping Universitet, Sweden, 1996; P. Lindskog, Methods, Algorithms and Tools for System Identification Based on Prior Knowledge, Ph.D. Thesis, Linköping Universitet, Sweden, 1996
[41] Julián, P.; Desages, A. C.; Agamennoni, O. E., High level canonical piecewise linear representation using a simplicial partition, IEEE Trans. Circuits Syst., CAS -46, 4, 463-480 (1999) · Zbl 0952.65019
[42] Agamennoni, O.; Paolini, E.; Desages, A., On robust stability analysis of a control system using laguerre series, Automatica, 28, 4, 815-818 (1992) · Zbl 0763.93065
[43] Lussón Cervantes, A.; Agamennoni, O. E.; Figueroa, J. L., Robust identification of PWL-Wiener models: Use in model predictive control, Lat. Am. Appl. Res., 33, 4, 435-442 (2003)
[44] O. Galán, Robust multi-linear model-based control for nonlinear plants, Ph.D. Thesis, University of Sydney, Australia, 2000; O. Galán, Robust multi-linear model-based control for nonlinear plants, Ph.D. Thesis, University of Sydney, Australia, 2000
[45] Galán, O.; Romagnoli, J. A.; Palazoglu, A., Real-time implementation of multi-linear model-based control strategies: An application to a bench-scale pH neutralization reactor, J. Process Contr., 14, 5, 571-579 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.