×

Bilinear estimates and applications to nonlinear wave equations. (English) Zbl 1146.35389

Summary: We undertake a systematic review of results proved by S. Klainerman and M. Machedon [Duke Math. J. 81, No. 1, 99–133 (1995; Zbl 0909.35094); Duke Math. J. 87, No. 3, 553–589 (1997; Zbl 0878.35075); Differ. Integral Equ. 10, No. 6, 1019–1030 (1997; Zbl 0940.35011)], Klainerman and S. Selberg [Commun. Partial Differ. Equations 22, No. 5-6, 901–918 (1997; Zbl 0884.35102)], and Klainerman and D. Tataru [J. Am. Math. Soc. 12, No. 1, 93–116 (1999; Zbl 0924.58010)] concerning local well-posedness of the Cauchy problem for certain systems of nonlinear wave equations, with minimal regularity assumptions on the initial data. Moreover we give a considerably simplified and unified treatment of these results and provide also complete proofs for large data. The paper is also intended as an introduction to and survey of current research in the very active area of nonlinear wave equations. The key ingredients throughout the survey are the use of the null structure of the equations we consider and, intimately tied to it, bilinear estimates.

MSC:

35L70 Second-order nonlinear hyperbolic equations
35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35L30 Initial value problems for higher-order hyperbolic equations
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] DOI: 10.2307/2006959 · Zbl 0522.35064
[2] DOI: 10.1007/BF01896020 · Zbl 0787.35097
[3] DOI: 10.1080/03605309608821204 · Zbl 0880.35116
[4] DOI: 10.1080/03605309908821463 · Zbl 0931.35134
[5] Carlesson L., St. Math. 44 pp 287– (1972)
[6] DOI: 10.1353/ajm.1999.0038 · Zbl 0952.35073
[7] DOI: 10.1155/S107379289900063X · Zbl 0938.35106
[8] DOI: 10.1002/cpa.3160460705 · Zbl 0744.58071
[9] DOI: 10.1080/03605309908821449 · Zbl 0929.35151
[10] DOI: 10.1007/BF02568371 · Zbl 0718.58019
[11] DOI: 10.4310/MRL.1994.v1.n2.a9 · Zbl 0841.35067
[12] Keel M., Comm. Partial Differential Equations 22 pp 1167– (1997)
[13] DOI: 10.1353/ajm.1998.0039 · Zbl 0922.35028
[14] DOI: 10.1155/S107379289800066X · Zbl 0999.58013
[15] DOI: 10.1002/cpa.3160460405 · Zbl 0808.35128
[16] DOI: 10.1215/S0012-7094-93-07101-3 · Zbl 0787.35090
[17] DOI: 10.1002/cpa.3160460902 · Zbl 0803.35095
[18] DOI: 10.1215/S0012-7094-94-07402-4 · Zbl 0818.35123
[19] DOI: 10.2307/2118611 · Zbl 0827.53056
[20] DOI: 10.1215/S0012-7094-95-08109-5 · Zbl 0909.35094
[21] DOI: 10.1215/S0012-7094-97-08718-4 · Zbl 0878.35075
[22] DOI: 10.1155/S1073792896000153 · Zbl 0853.35062
[23] DOI: 10.1155/S1073792896000529 · Zbl 0909.35095
[24] Klainerman S., Differential Integral Equations 10 pp 1019– (1997)
[25] DOI: 10.1080/03605309708821288 · Zbl 0884.35102
[26] DOI: 10.1090/S0894-0347-99-00282-9 · Zbl 0924.58010
[27] DOI: 10.1353/ajm.1996.0002 · Zbl 0855.35080
[28] DOI: 10.1006/jfan.1995.1075 · Zbl 0846.35085
[29] Meyer Y., Circ. Mat. Palermo 2 pp 1– (1981)
[30] DOI: 10.1080/03605309308820925 · Zbl 0803.35096
[31] Shatah J., Courant Lecture Notes in Mathematics pp 2– (1998)
[32] DOI: 10.1155/S1073792894000346 · Zbl 0830.35086
[33] DOI: 10.1215/S0012-7094-77-04430-1 · Zbl 0372.35001
[34] DOI: 10.1080/03605309808821400 · Zbl 0914.35083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.