Feng, Cun-Fang; Zhang, Yan; Sun, Jin-Tu; Qi, Wei; Wang, Ying-Hai Generalized projective synchronization in time-delayed chaotic systems. (English) Zbl 1146.37318 Chaos Solitons Fractals 38, No. 3, 743-747 (2008). Summary: We report on generalized projective synchronization between two identical time delay chaotic systems with single time delays. It overcomes some limitations of the previous work where generalized projective synchronization has been investigated only in finite-dimensional chaotic systems, so we can achieve generalized projective synchronization in infinite-dimensional chaotic systems. This method allows us to arbitrarily direct the scaling factor onto a desired value. Numerical simulations show that this method works very well. Cited in 16 Documents MSC: 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior PDF BibTeX XML Cite \textit{C.-F. Feng} et al., Chaos Solitons Fractals 38, No. 3, 743--747 (2008; Zbl 1146.37318) Full Text: DOI References: [1] Pecora, L. M.; Carroll, T. L., Phys Rev Lett, 64, 821 (1990) [2] Hunt, E. T., Phys Rev Lett, 66, 1953 (1991) [3] Brown, R., Phys Rev Lett, 81, 4835 (1998) [4] Yang, J. Z.; Hu, G.; Xiao, J. H., Phys Rev Lett, 80, 496 (1998) [5] Shahverdiev, E. M., Phys Rev E, 70, 067202 (2004) [6] Xu, J. F.; Min, L. Q.; Chen, G. R., Chin Phys Lett, 21, 1445 (2004) [7] Rulkov, N. F.; Sushchik, M. M.; Tsimring, L. S., Abarbanel HDL Phys Rev E, 51, 980 (1995) [8] Rosenblutn, M. G.; Pikovsky, A. S.; Kurths, J., Phys Rev Lett, 76, 1804 (1996) [9] Cao, L. Y.; Lai, Y. C., Phys Rev E, 58, 382 (1998) [10] Mainieri, R.; Rehacek, J., Phys Rev Lett, 82, 3042 (1999) [11] Chee, C. Y.; Xu, D., Chaos, Solitons & Fractals, 23, 1063 (2005) [12] Xu, D. L., Phys Rev E, 63, 027201 (2001) [13] Xu, D. L.; Chee, C. Y., Phys Rev E, 66, 046218 (2002) [14] Xu, D.; Chee, C.; Li, C., Chaos, Solitons & Fractals, 22, 175 (2004) [15] Wen, G. L.; Xu, D. L., Chaos, Solitons & Fractals, 26, 71 (2005) [16] Wen, G. L.; Xu, D. L., Phys Lett A, 333, 420 (2004) [17] Feng, C. F.; Zhang, Y.; Wang, Y. H., Chin Phys Lett, 23, 1418 (2006) [18] Yan, J.; Li, C., Chaos, Solitons & Fractals, 26, 1119 (2005) [19] Yan, J. P.; Li, C. P., J Shanghai Univ, 10, 299 (2006) [20] Pyragas, K., Phys Rev E, 58, 3067 (1998) [21] Pyragas, K., Int J Bifurcat Chaos, 8, 1839 (1998), [in Appl Sci Eng] [22] Masoller, C., Chaos, 7, 455 (1997) [23] Zhao, H.; Liu, Y. W.; Wang, Y. H.; Hu, B., Phys Rev E, 58, 4383 (1998) [24] Ikeda, K.; Kondo, K.; Akimoto, O., Phys Rev Lett, 49, 1467 (1982) [25] Li, J. N.; Hao, B. L., Commun Theor Phys, 11, 265 (1989) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.