On \(S\)-asymptotically \(\omega \)-periodic functions on Banach spaces and applications. (English) Zbl 1146.43004

A continuous function \(f: [0,+\infty]\to X\) (Banach space) for which there exists \(\omega> 0\) such that
\[ \lim_{t\to+\infty} (f(t+ \omega)- f(t))= 0 \]
is called \(S\)-asymptotically \(\omega\)-periodic. The authors show that the abstract Cauchy problem:
\[ \begin{aligned} u'(t)&= Au(t)+ G(t, u(t)),\quad t\geq 0,\\ u(0)&= x_0\in X, \end{aligned} \]
where \(A: D(A)\subseteq X\to X\) is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators \((T\cos)_{t\geq 0}\) on \(X\) and \(G: [0,+\infty)\times X\to X\) is a continuous function, under some supplementary conditions concerning \(G\), has a unique \(S\)-asymptotically \(\omega\)-periodic mild solution.


43A60 Almost periodic functions on groups and semigroups and their generalizations (recurrent functions, distal functions, etc.); almost automorphic functions
42A75 Classical almost periodic functions, mean periodic functions
Full Text: DOI


[1] Bart, Harm, Periodic strongly continuous semigroups, Ann. Mat. Pura Appl. (4), 115, 311-318 (1977), (1978) · Zbl 0376.47018
[2] Liang, Zhong Chao, Asymptotically periodic solutions of a class of second order nonlinear differential equations, Proc. Amer. Math. Soc., 99, 4, 693-699 (1987) · Zbl 0625.34048
[3] Corduneanu, C., Almost Periodic Functions (1989), Chelsea: Chelsea New York · Zbl 0672.42008
[4] Grimmer, R. C., Asymptotically almost periodic solutions of differential equations, SIAM J. Appl. Math., 17, 109-115 (1969) · Zbl 0215.44503
[5] N’Guérékata, G. M., Topics in Almost Automorphy (2005), Springer-Verlag: Springer-Verlag New York · Zbl 1073.43004
[6] Gao, Haiyin; Wang, Ke; Wei, Fengying; Ding, Xiaohua, Massera-type theorem and asymptotically periodic logistic equations, Nonlinear Anal. Real World Appl., 7, 1268-1283 (2006) · Zbl 1162.34325
[7] Henríquez, H. R., Approximation of abstract functional differential equations with unbounded delay, Indian J. Pure Appl. Math., 27, 4, 357-386 (1996) · Zbl 0853.34072
[8] Henríquez, H. R.; Vásquez, C. H., Almost periodic solutions of abstract retarded functional-differential equations with unbounded delay, Acta Appl. Math., 57, 2, 105-132 (1999) · Zbl 0944.34058
[9] Hernández, E.; Diagana, T., Existence and uniqueness of pseudo almost periodic solutions to some abstract partial neutral functional differential equations and applications, J. Math. Anal. Appl., 327, 2, 776-791 (2007) · Zbl 1123.34060
[10] Hino, Y.; Naito, T.; Minh, N. V.; Shin, J. S., Almost Periodic Solutions of Differential Equations in Banach Spaces (2002), Taylor & Francis: Taylor & Francis London · Zbl 1026.34001
[11] Levitan, B. M.; Zhikov, V. V., Almost Periodic Functions and Differential Equations (1982), Cambridge Univ. Press · Zbl 0499.43005
[12] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0516.47023
[13] Ruess, W. M.; Summers, W. H., Minimal sets of almost periodic motions, Math. Ann., 276, 145-158 (1986) · Zbl 0584.54038
[14] Ruess, W. M.; Summers, W. H., Asymptotic almost periodicity and motions of semigroups of operators, Linear Algebra Appl., 84, 335-351 (1986) · Zbl 0616.47047
[15] Utz, W. R.; Waltman, P., Asymptotic almost periodicity of solutions of a system of differential equations, Proc. Amer. Math. Soc., 18, 597-601 (1967) · Zbl 0166.08701
[16] Wong, J. S.W.; Burton, T. A., Some properties of solutions of \(u''(t) + a(t) f(u) g(u^\prime) = 0\). II, Monatsh. Math., 69, 368-374 (1965) · Zbl 0142.06402
[17] Zaidman, S., Almost-Periodic Functions in Abstract Spaces, Res. Notes Math., vol. 126 (1985), Pitman: Pitman Boston, MA · Zbl 0648.42006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.