×

Determining a magnetic Schrödinger operator from partial Cauchy data. (English) Zbl 1148.35096

Suppose that \(n\geq 3\) and \(\Omega\subseteq\mathbb{R}^n\) is a bounded domain with smooth boundary. For a real magnetic potential \(A\in C^2(\overline{\Omega},\mathbb{R}^n)\) and a bounded electric potential \(q\in L^\infty(\Omega)\) consider the magnetic Schrödinger operator \[ \mathcal{L}_{A,q}(x,D):=\sum_{j=1}^n(-\text{i}\partial_j+A_j(x))^2+q(x). \] It is assumed that \(0\) is not an eigenvalue of \(\mathcal{L}_{A,q}\colon H^2(\Omega)\cap H^1_0(\Omega)\to L^2(\Omega)\). If \(\nu\) is the exterior unit normal to \(\partial\Omega\) then let us define the Dirichlet to Neumann map (DN map) \[ \mathcal{N}_{A,q}\colon H^{1/2}(\partial\Omega)\to H^{-1/2}(\partial\Omega) \] by \[ \mathcal{N}_{A,q}(f) :=((\partial_\nu+\text{i}A\cdot\nu) \mathcal{L}_{A,q}^{-1}f)| _{\partial\Omega}, \] where \(\mathcal{L}_{A,q}^{-1}\colon H^{1/2}(\partial\Omega)\to H^1(\Omega)\) is the Dirichlet inverse of \(\mathcal{L}_{A,q}\). If \(x_0\in\mathbb{R}^n\backslash\overline{\text{conv}(\Omega)}\) then \[ F(x_0):=\{x\in\partial\Omega\mid(x-x_0)\cdot\nu(x)\leq0\} \] is the front side of \(\partial\Omega\) with respect to \(x_0\).
The main result is the following: Suppose that \(\Omega\) is simply connected, \(A_1,A_2\in C^2(\overline{\Omega},\mathbb{R}^n)\) are two real magnetic potentials, \(q_1,q_2\in L^\infty(\Omega)\) are two electric potentials, and \(\mathcal{L}_{A_k,q_k}\) is invertible in the sense mentioned above, for \(k=1,2\). If the images of \(\mathcal{N}_{A_1,q_1}\) and \(\mathcal{N}_{A_2,q_2}\) coincide when restricted to a neighborhood of \(F(x_0)\) for some \(x_0\) as above, then \(A_1\) and \(A_2\) differ only by a gradient and \(q_1=q_2\).
In other words, if \(n=3\) the magnetic field and electric potential can be recovered from the values of the images of the DN map on one side of the boundary of the domain. In particular, if \(\Omega\) is strongly starshaped with respect to a point \(x_0\in\partial\Omega\) then the images of the DN map, restricted to a neighborhood of \(x_0\), determine the magnetic field and the electric potential. This work complements the results in [Ann. Math. (2) 165, No. 2, 567–591 (2007; Zbl 1127.35079)].

MSC:

35R30 Inverse problems for PDEs
35J10 Schrödinger operator, Schrödinger equation
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
78A05 Geometric optics
92C55 Biomedical imaging and signal processing

Citations:

Zbl 1127.35079

References:

[1] Boman J., Quinto T. (1987) Support theorems for real-analytic Radon transforms. Duke Math. J. 55(4): 943–948 · Zbl 0645.44001 · doi:10.1215/S0012-7094-87-05547-5
[2] Boman J.: Helgason’s support theorem for Radon transforms – a new proof and a generalization. In: Mathematical methods in tomography (Oberwolfach, 1990), Lecture Notes in Math. 1497, Berlin- Heidelberg-NewYork: Springer, 1991, pp. 1–5 · Zbl 0772.44003
[3] Eskin G., Ralston J. (1995) Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy. Commun. Math. Phys. 173, 199–224 · Zbl 0843.35133 · doi:10.1007/BF02100187
[4] Helgason S.: The Radon transform. 2nd ed., Progress in Math., Basel-Boston: Birkhäuser, 1999 · Zbl 0932.43011
[5] Hörmander L. (1993) Remarks on Holmgren’s uniqueness theorem. Ann. Inst. Fourier 43(5): 1223–1251 · Zbl 0804.35004
[6] Hörmander L., (1990) The Analysis of Linear Partial Differential Operators Classics in Mathematics. Berlin-Heidelberg-New York, Springer
[7] Kenig C.E., Sjöstrand J., Uhlmann G. The Calderón problem with partial data. To appear in Ann. of Math.
[8] Nakamura G., Sun Z., Uhlmann G. (1995) Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field. Math. Ann. 303, 377–388 · Zbl 0843.35134 · doi:10.1007/BF01460996
[9] Novikov R.G., Khenkin G.M. (1987) The \({\overline\partial}\) -equation in the multidimensional inverse scattering problem. Russ. Math. Surv. 42, 109–180 · Zbl 0674.35085 · doi:10.1070/RM1987v042n03ABEH001419
[10] Salo M.: Inverse problems for nonsmooth first order perturbations of the Laplacian. Ann. Acad. Scient. Fenn. Math. Dissertations, Vol. 139, 2004 · Zbl 1059.35175
[11] Salo M. Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field. To appear in Comm. in PDE · Zbl 1119.35119
[12] Sun Z. (1992) An inverse boundary value problem for the Schrödinger operator with vector potentials. Trans. Amer. Math. Soc. 338(2): 953–969 · Zbl 0795.35143 · doi:10.2307/2154438
[13] Tolmasky C.F. (1998) Exponentially growing solutions for nonsmooth first-order perturbations of the Laplacian. SIAM J. Math. Anal. 29(1): 116–133 · Zbl 0908.35028 · doi:10.1137/S0036141096301038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.