Raja, P.; Vaezpour, S. M. Some extensions of Banach’s contraction principle in complete cone metric spaces. (English) Zbl 1148.54339 Fixed Point Theory Appl. 2008, Article ID 768294, 11 p. (2008). Summary: We consider complete cone metric spaces. We generalize some definitions such as \(c\)-nonexpansive and \((c,\lambda )\)-uniformly locally contractive functions, \(f\)-closure, \(c\)-isometries in cone metric spaces, and certain fixed point theorems will be proved in those spaces. Among other results, we prove some interesting applications for fixed point theorems in cone metric spaces. Cited in 2 ReviewsCited in 34 Documents MSC: 54H25 Fixed-point and coincidence theorems (topological aspects) PDF BibTeX XML Cite \textit{P. Raja} and \textit{S. M. Vaezpour}, Fixed Point Theory Appl. 2008, Article ID 768294, 11 p. (2008; Zbl 1148.54339) Full Text: DOI EuDML OpenURL References: [1] doi:10.2307/2034113 · Zbl 0096.17101 [2] doi:10.2307/2034579 · Zbl 0124.16004 [3] doi:10.1016/j.na.2005.10.017 · Zbl 1106.47047 [4] doi:10.2307/1997954 · Zbl 0365.54023 [5] doi:10.2307/2036601 · Zbl 0186.56503 [6] doi:10.1109/TAC.1964.1105743 [7] doi:10.1109/TMAG.1982.1061866 [8] doi:10.1016/j.jmaa.2005.03.087 · Zbl 1118.54022 [9] doi:10.1016/j.jmaa.2007.09.070 · Zbl 1147.54022 [10] doi:10.1016/j.jmaa.2007.10.065 · Zbl 1156.54023 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.