Some extensions of Banach’s contraction principle in complete cone metric spaces. (English) Zbl 1148.54339

Summary: We consider complete cone metric spaces. We generalize some definitions such as \(c\)-nonexpansive and \((c,\lambda )\)-uniformly locally contractive functions, \(f\)-closure, \(c\)-isometries in cone metric spaces, and certain fixed point theorems will be proved in those spaces. Among other results, we prove some interesting applications for fixed point theorems in cone metric spaces.


54H25 Fixed-point and coincidence theorems (topological aspects)
Full Text: DOI EuDML


[1] doi:10.2307/2034113 · Zbl 0096.17101
[2] doi:10.2307/2034579 · Zbl 0124.16004
[3] doi:10.1016/j.na.2005.10.017 · Zbl 1106.47047
[4] doi:10.2307/1997954 · Zbl 0365.54023
[5] doi:10.2307/2036601 · Zbl 0186.56503
[6] doi:10.1109/TAC.1964.1105743
[7] doi:10.1109/TMAG.1982.1061866
[8] doi:10.1016/j.jmaa.2005.03.087 · Zbl 1118.54022
[9] doi:10.1016/j.jmaa.2007.09.070 · Zbl 1147.54022
[10] doi:10.1016/j.jmaa.2007.10.065 · Zbl 1156.54023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.