Khanh, P. Q.; Tuan, N. D. Optimality conditions for nonsmooth multiobjective optimization using Hadamard directional derivatives. (English) Zbl 1149.90134 J. Optim. Theory Appl. 133, No. 3, 341-357 (2007). This paper considers a nonsmooth vector optimization problem. The authors use the Hadamard directional derivative for the vector function and a scalarization technique via signed distances to establish necessary and sufficient optimality conditions for weak efficiency as well as firm efficiency. For presenting the necessary first-order conditions, no continuity assumptions are imposed. To derive the second-order sufficient conditions, only the calmness property of the first-order derivatives is assumed. By some examples it is demonstrated that the new conditions are more advantageous than previous results from the literature (see e.g. papers by A. Guerraggio and D. T. Luc, J. Optim. Theory Appl. 109, 615–629 (2001; Zbl 1038.49027), ibid. 116, 117–129 (2003; Zbl 1030.90115) or I. Ginchev, A. Guerraggio, M. Rocca, in: Giannessi, Franco (ed.) et al., Variational analysis and applications. Erice, Italy 2003, New York, NY: Springer. Nonconvex Optimization and its Applications 79, 427–450 (2005; Zbl 1148.90011), Math. Program. 104, No. 2–3 (B), 389–405 (2005; Zbl 1102.90058), Appl. Math., Praha 51, No. 1, 5-36 (2006; Zbl 1164.90399). Reviewer: Frank Werner (Magdeburg) Cited in 35 Documents MSC: 90C29 Multi-objective and goal programming 90C46 Optimality conditions and duality in mathematical programming 49J52 Nonsmooth analysis Keywords:Multiobjective optimization; Weak efficiency; Firm efficiency; Hadamard directional derivatives Citations:Zbl 1038.49027; Zbl 1030.90115; Zbl 1148.90011; Zbl 1102.90058; Zbl 1164.90399 PDF BibTeX XML Cite \textit{P. Q. Khanh} and \textit{N. D. Tuan}, J. Optim. Theory Appl. 133, No. 3, 341--357 (2007; Zbl 1149.90134) Full Text: DOI References: [1] Rockafellar, R. T.; Wets, R. J.-B., Variational Analysis (1998), Berlin: Springer, Berlin · Zbl 0888.49001 [2] Bonnans, J. F.; Shapiro, A., Perturbation Analysis of Optimization Problems (2000), New York: Springer, New York · Zbl 0966.49001 [3] Mordukhovich, B. S., Variational Analysis and Generalized Differentiation (2005), Berlin: Springer, Berlin · Zbl 1100.49002 [4] Penot, J.-P.; Crouzeix, J. P.; Martinez-Legaz, J. E.; Volle, M., Are generalized derivatives useful for generalized convex function?, Generalized Convexity, Generalized Monotonicity: Recent Results, 3-59 (1998), Dordrecht: Kluwer Academic, Dordrecht · Zbl 0957.49013 [5] Ioffe, A.D.: Metric regularity and subdifferential calculus. In: Russian Mathematical Surveys, vol. 55, pp. 501-558 (2000) · Zbl 0979.49017 [6] Guerraggio, A.; Luc, D. T., Optimality conditions for C^1,1 vector optimization problems, J. Optim. Theory Appl., 109, 615-629 (2001) · Zbl 1038.49027 [7] Guerraggio, A.; Luc, D. T., Optimality conditions for C^1,1 constrained multiobjective problems, J. Optim. Theory Appl., 116, 117-129 (2003) · Zbl 1030.90115 [8] Jourani, A.; Thibault, L., Approximations and metric regularity in mathematical programming in Banach spaces, Math. Oper. Res., 18, 390-400 (1993) · Zbl 0779.49021 [9] Allali, K.; Amahroq, T., Second order approximations and primal and dual necessary optimality conditions, Optimization, 40, 229-246 (1997) · Zbl 0877.49024 [10] Amahroq, T.; Gadhi, N., Second order optimality conditions for the extremal problem under inclusion constraints, J. Math. Anal. Appl., 285, 74-85 (2003) · Zbl 1029.49014 [11] Khanh, P. Q.; Tuan, N. D., First and second order optimality conditions using approximations for nonsmooth vector optimization in Banach spaces, J. Optim. Theory Appl., 130, 2, 289-308 (2006) · Zbl 1143.90386 [12] Jeyakumar, V.; Luc, D. T., Approximate Jacobian matrices for nonsmooth continuous maps and C^1-optimization, SIAM J. Control Optim., 36, 1815-1832 (1998) · Zbl 0923.49012 [13] Jeyakumar, V.; Wang, X., Approximate Hessian matrices and second order optimality conditions for nonlinear programming problem with C^1-data, J. Aust. Math. Soc. Ser. B, 40, 403-420 (1999) · Zbl 0954.90053 [14] Luc, D. T., A multiplier rule in multiobjective programming problems with continuous data, SIAM J. Optim., 13, 168-178 (2002) · Zbl 1055.90063 [15] Penot, J.-P., Differentiability relations and differential stability of perturbed optimization problems, SIAM J. Control Optim., 22, 529-551 (1984) · Zbl 0552.58006 [16] Cambini, A.; Martein, L.; Vlach, M., Second-order tangent sets and optimality conditions, Math. Jpn., 49, 451-461 (1999) · Zbl 1030.90134 [17] Penot, J.-P.; Nguyen, V. H.; Strodiot, J. J.; Tossings, P., Recent advances on second-order optimality conditions, Optimization, 357-380 (2000), Berlin: Springer, Berlin · Zbl 0994.49016 [18] Mordukhovich, B. S.; Outrata, J. V., On second-order subdifferentials and their applications, SIAM J. Optim., 12, 139-169 (2001) · Zbl 1011.49016 [19] Mordukhovich, B. S.; Treiman, J. S.; Zhu, Q. J., An extended extremal principle with applications to multiobjective optimization, SIAM J. Optim., 14, 359-379 (2003) · Zbl 1041.49019 [20] Mordukhovich, B. S., Necessary conditions in nonsmooth minimization via lower and upper subgradients, Set-Valued Anal., 12, 163-193 (2004) · Zbl 1046.49011 [21] Jiménez, B.; Novo, V., First and second-order sufficient conditions for strict minimality in nonsmooth vector optimization, J. Math. Anal. Appl., 284, 496-510 (2003) · Zbl 1033.90120 [22] Poliquin, R. A.; Rockafellar, R. R., Tilt stability of a local minimum, SIAM J. Optim., 8, 287-299 (1998) · Zbl 0918.49016 [23] Levy, A. B.; Poliquin, R. A.; Rockafellar, R. R., Stability of locally optimal solutions, SIAM J. Optim., 10, 580-604 (2000) · Zbl 0965.49018 [24] Mordukhovich, B. S., Equilibrium problems with equilibrium constraints via multiobjective optimization, Optim. Methods Softw., 19, 479-492 (2004) · Zbl 1168.90624 [25] Mordukhovich, B. S., Optimization and equilibrium problems with equilibrium constraints, Omega, 33, 379-384 (2005) [26] Jahn, J., Vector Optimization: Theory, Applications and Extensions (2004), Berlin: Springer, Berlin · Zbl 1055.90065 [27] Wang, S., Second-order necessary and sufficient conditions in multiobjective programming, Numer. Funct. Anal. Optim., 12, 237-252 (1991) · Zbl 0764.90076 [28] Ginchev, I.; Guerraggio, A.; Rocca, M., From scalar to vector optimization, Appl. Math., 51, 5-36 (2006) · Zbl 1164.90399 [29] Ginchev, I.; Guerraggio, A.; Rocca, M.; Giannessi, F.; Maugeri, A., First order conditions for C^0,1 constrained vector optimization, Variational Analysis and Applications, 427-450 (2005), London: Kluwer Academic, London · Zbl 1148.90011 [30] Ginchev, I.; Guerraggio, A.; Rocca, M., Second order conditions for C^1,1 constrained vector optimization, Math. Program. Ser. B, 104, 389-405 (2005) · Zbl 1102.90058 [31] Studniarski, M., Second order necessary conditions for optimality in nonsmooth nonlinear programming, J. Math. Anal. Appl., 154, 303-317 (1991) · Zbl 0725.90085 [32] Ginchev, I.; Guerraggio, A., Second order optimality conditions in nonsmooth unconstrained optimization, Pliska Stud. Math. Bulg., 12, 39-50 (1998) · Zbl 0946.49013 [33] Ginchev, I., Higher order optimality conditions in nonsmooth optimization, Optimization,, 51, 47-72 (2002) · Zbl 1011.49014 [34] Hiriart-Urruty, J.-B., New concept in nondifferentiable programming, Anal. Non. Convex, Bull. Soc. Math. France, 60, 57-85 (1979) · Zbl 0469.90071 [35] Hiriart-Urruty, J.-B., Tangent cones, generalized gradients and mathematical programming in Banach spaces, Math. Oper. Res., 4, 79-97 (1979) · Zbl 0409.90086 [36] Gfrerer, H., Second-order optimality conditions for scalar and vector optimization problems in Banach spaces, SIAM J. Optim., 45, 972-997 (2006) · Zbl 1117.49024 [37] Ginchev, I.; Hoffmann, A., Approximation of set-valued functions by single-valued one, Discuss. Math. Differ. Incl. Control Optim., 22, 33-66 (2002) · Zbl 1039.90051 [38] Jiménez, B., Strict efficiency in vector optimization, J. Math. Anal. Appl., 265, 264-284 (2002) · Zbl 1010.90075 [39] Auslender, A., Stability in mathematical programming with nondifferentiable data, SIAM J. Control Optim., 22, 239-254 (1984) · Zbl 0538.49020 [40] Studniarski, M., Necessary and sufficient conditions for isolated local minima of nonsmooth functions, SIAM J. Control Optim., 24, 1044-1049 (1986) · Zbl 0604.49017 [41] Penot, J.-P., Second-order conditions for optimization problems with constraints, SIAM J. Control Optim., 37, 303-318 (1998) · Zbl 0917.49023 [42] Penot, J.-P., Sous différentiels de fonctions numériques nonconvexes, Comptes Rendus Hebd. Séances Acad. Sci. Sér. A, 278, 1553-1555 (1974) · Zbl 0318.46055 [43] Ioffe, A. D., Calculus of dini subdifferentials of functions and contingent coderivatives of set-valued maps, Nonlinear Anal. Theory Methods Appl., 8, 517-539 (1984) · Zbl 0542.46023 [44] Maeda, T., Second order conditions for efficiency in nonsmooth multiobjective optimization problems, J. Optim. Theory Appl., 122, 521-538 (2004) · Zbl 1082.90106 [45] Robinson, S. M., Some continuity properties of polyhedral multifunctions, Math. Program. Study, 14, 206-214 (1981) · Zbl 0449.90090 [46] Klatte, D.; Kummer, B., Constrained minima and Lipschitz penalties in metric spaces, SIAM J. Optim., 13, 619-633 (2002) · Zbl 1042.49020 [47] Zhang, R., Weakly upper Lipschitz multifunctions and applications in parametric optimization, Math. Program. Ser. A, 102, 153-166 (2005) · Zbl 1060.49017 [48] Dinh, N.; Tuan, L. A., Directional Kuhn-Tucker condition and duality for quasidifferentiable programs, Acta Math. Vietnam., 28, 17-38 (2003) · Zbl 1036.90064 [49] Demyanov, V. F.; Rubinov, A. M., On quasidifferentiable functionals, Sov. Math. Dokl., 21, 14-17 (1980) · Zbl 0456.49016 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.