Teodorescu, Dinu A contractive method for a semilinear equation in Hilbert spaces. (English) Zbl 1150.47351 An. Univ. Bucur., Mat. 54, No. 2, 289-292 (2005). Summary: In this note, we establish an existence and uniqueness result for the semilinear equation \(Au+F(u)=f\), where \(A\) is a linear maximal monotone and strongly positive operator and the nonlinearity \(F\) is a Lipschitz operator. Cited in 1 ReviewCited in 2 Documents MSC: 47H06 Nonlinear accretive operators, dissipative operators, etc. 47H10 Fixed-point theorems Keywords:strongly positive operator; Lipschitz operator; maximal monotone operator PDF BibTeX XML Cite \textit{D. Teodorescu}, An. Univ. Bucur., Mat. 54, No. 2, 289--292 (2005; Zbl 1150.47351) OpenURL