×

Unsteady flows in pipes with finite curvature. (English) Zbl 1151.76644

Summary: Motivated by the study of blood flow in a curved artery, we consider fluid flow through a curved pipe of uniform curvature, \(\delta \), driven by a prescribed oscillatory axial pressure gradient. The curved pipe has finite (as opposed to asymptotically small) curvature, and we determine the effects of both the centrifugal and Coriolis forces on the flow. In addition to \(\delta \), the flow is parameterized by the Dean number, \(D\), the Womersley number, \(\alpha \), and a secondary streaming Reynolds number, \(R_{s}\). Asymptotic solutions are developed for the case when \(\delta \ll 1, \alpha \ll 1\) and the magnitude of the axial pressure gradient is small, using regular perturbation techniques. For intermediate values of the governing parameters, a pseudospectral code is used to obtain numerical solutions. For flows driven by a sinusoidal pressure gradient \((D=0)\), we identify three distinct classes of stable solutions: 2\(\pi \)-periodic symmetric, 2\(\pi \)-periodic asymmetric, and asymmetric solutions that are either quasi-periodic, or periodic with period 2\(\pi k\) for \(k \in \mathbb N\). The transition between solutions is dependent on the value of \(\delta \); thus pipes with finite curvature may exhibit qualitatively different transitions between the solution classes as the governing parameters are varied from those of curved pipes with asymptotically small curvature. When \(\alpha \gg 1\), matched asymptotic expansions are used to simplify the system, and the resulting equations are solved analytically for \(R_{s}\ll 1, \delta \ll 1\) and numerically for larger parameter values. We then determine the effect of a non-zero steady component of the pressure gradient \((D\neq 0)\), and show that, for certain parameter values, when \(D\) is above a critical value the periodic asymmetric solutions regain spatial symmetry. Finally, we show that the effects of finite curvature can lead to substantial quantitative differences in the wall shear stress distribution and discuss briefly the physiological implications of the results for blood flow in arteries.

MSC:

76Z05 Physiological flows
76D05 Navier-Stokes equations for incompressible viscous fluids
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
92C35 Physiological flow
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1017/S0022112066000910 · Zbl 0139.21704 · doi:10.1017/S0022112066000910
[2] DOI: 10.1017/S0022112092003380 · doi:10.1017/S0022112092003380
[3] DOI: 10.1017/S0022112075002418 · Zbl 0314.76026 · doi:10.1017/S0022112075002418
[4] DOI: 10.1063/1.1955547 · Zbl 1187.76489 · doi:10.1063/1.1955547
[5] Pedley, The Fluid Mechanics of Large Blood Vessels. (1980) · Zbl 0449.76100 · doi:10.1017/CBO9780511896996
[6] DOI: 10.1017/S002211209000132X · doi:10.1017/S002211209000132X
[7] DOI: 10.1017/S0022112080000213 · Zbl 0437.76034 · doi:10.1017/S0022112080000213
[8] DOI: 10.1093/qjmam/54.4.631 · Zbl 0997.76103 · doi:10.1093/qjmam/54.4.631
[9] Glendinning, Stability, Instability and Chaos: an Introduction to the Theory of Nonlinear Differential Equations. (1994) · Zbl 0808.34001 · doi:10.1017/CBO9780511626296
[10] DOI: 10.1017/S0022112071002970 · Zbl 0215.29101 · doi:10.1017/S0022112071002970
[11] Dean, Phil. Mag. 5 pp 673– (1928) · doi:10.1080/14786440408564513
[12] DOI: 10.1017/S0022112080001310 · doi:10.1017/S0022112080001310
[13] DOI: 10.1017/S0022112085002877 · Zbl 0585.76198 · doi:10.1017/S0022112085002877
[14] Ito, JSME Intl J. 30 pp 543– (1987) · doi:10.1299/jsme1987.30.543
[15] DOI: 10.1016/0021-9290(79)90165-9 · doi:10.1016/0021-9290(79)90165-9
[16] Caro, Proc. R. Soc. Lond. 177 pp 109– (1971)
[17] DOI: 10.1146/annurev.fl.15.010183.002333 · doi:10.1146/annurev.fl.15.010183.002333
[18] DOI: 10.1017/S0022112098001992 · Zbl 0915.76101 · doi:10.1017/S0022112098001992
[19] DOI: 10.1017/S0022112098002006 · Zbl 0915.76102 · doi:10.1017/S0022112098002006
[20] DOI: 10.1017/S0022112087001848 · Zbl 0632.76032 · doi:10.1017/S0022112087001848
[21] DOI: 10.1002/aic.690160625 · doi:10.1002/aic.690160625
[22] DOI: 10.1115/1.2796012 · doi:10.1115/1.2796012
[23] DOI: 10.1017/S002211209300271X · doi:10.1017/S002211209300271X
[24] Sugawara, Blood Flow in the Heart and Large Vessels. (1989) · doi:10.1007/978-4-431-66919-7
[25] DOI: 10.1114/1.1467679 · doi:10.1114/1.1467679
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.