van der Walt, Jan Harm The order completion method for systems of nonlinear PDEs: pseudo-topological perspectives. (English) Zbl 1154.35328 Acta Appl. Math. 103, No. 1, 1-17 (2008). Summary: By setting up appropriate uniform convergence structures, we are able to reformulate the order completion method of Oberguggenberger and Rosinger in a setting that more closely resembles the usual topological constructions for solving PDEs. As an application, we obtain existence and uniqueness results for the solutions of arbitrary continuous, nonlinear PDEs. Cited in 9 Documents MSC: 35G20 Nonlinear higher-order PDEs 54A20 Convergence in general topology (sequences, filters, limits, convergence spaces, nets, etc.) 06B30 Topological lattices 46E05 Lattices of continuous, differentiable or analytic functions Keywords:convergence space; uniform convergence structures PDF BibTeX XML Cite \textit{J. H. van der Walt}, Acta Appl. Math. 103, No. 1, 1--17 (2008; Zbl 1154.35328) Full Text: DOI arXiv OpenURL References: [1] Anguelov, R.: Dedekind order completion of \(\mathcal{C}(X)\) by Hausdorff continuous functions. Quaest. Math. 27, 153–170 (2004) · Zbl 1062.54017 [2] Anguelov, R., Rosinger, E.E.: Hausdorff continuous solutions of nonlinear PDEs through the order completion method. Quaest. Math. 28(3), 271–285 (2005) · Zbl 1330.35080 [3] Anguelov, R., van der Walt, J.H.: Order convergence on \(\mathcal{C}(X)\) . Quaest. Math. 28(4), 425–457 (2005) · Zbl 1094.46004 [4] Arnold, V.I.: Lectures on PDEs. Springer Universitext (2004) [5] Baire, R.: Lecons sur les fonctions discontinues. Collection Borel, Paris (1905) · JFM 36.0438.01 [6] Beattie, R., Butzmann, H.-P.: Convergence Structures and Applications to Functional Analysis. Kluwer Academic, Dordrecht (2002) · Zbl 1246.46003 [7] Birkhoff, G.: Lattice Theory. Am. Math. Soc., Providence (1973) · Zbl 0063.00402 [8] Crandall, M.G., Lions, P.J.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277, 183–186 (1983) · Zbl 0599.35024 [9] Crandall, M.G., Ishii, H., Lions, P.J.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992) · Zbl 0755.35015 [10] Dilworth, R.P.: The normal completion of the lattice of continuous functions. Trans. Am. Math. Soc. 427–438 (1950) · Zbl 0037.20205 [11] Forster, O.: Analysis 3, Integralrechnung im \(\mathbb{R}\) n mit Anwendungen. Vieweg, Wiesbaden (1981) · Zbl 0479.26010 [12] Gähler, W.: Grundstrukturen der Analysis I. Birkhäuser, Basel (1977) · Zbl 0346.54001 [13] Gähler, W.: Grundstrukturen der Analysis II. Birkhäuser, Basel (1978) · Zbl 0393.46001 [14] Ishii, H.: Perron’s method for Hamilton-Jacobi equations. Duke Math. J. 55(2), 369–384 (1987) · Zbl 0697.35030 [15] Luxemburg, W.A., Zaanen, A.C.: Riesz Spaces I. North-Holland, Amsterdam (1971) · Zbl 0231.46014 [16] Neuberger, J.W.: Sobolev Gradients and Differential Equations. Springer Lecture Notes in Mathematics, vol. 1670. Springer, Berlin (1997) · Zbl 0935.35002 [17] Neuberger, J.W.: Continuous Newton’s method for polynomials. Math. Intell. 21, 18–23 (1999) · Zbl 1052.30502 [18] Neuberger, J.W.: A near minimal hypothesis Nash-Moser theorem. Int. J. Pure Appl. Math. 4, 269–280 (2003) · Zbl 1021.47043 [19] Neuberger, J.W.: Prospects of a central theory of partial differential equations. Math. Intell. 27(3), 47–55 (2005) · Zbl 1090.35011 [20] Oberguggenberger, M.B., Rosinger, E.E.: Solution of Continuous Nonlinear PDEs through Order Completion. North-Holland, Amsterdam (1994) · Zbl 0821.35001 [21] Peressini, A.: Ordered Topological Vector Spaces. Harper & Row, New York (1967) · Zbl 0169.14801 [22] Perron, O.: Eine neue behandlung der randwertufgabe für {\(\Delta\)}u=0. Math. Z. 18, 42–52 (1923) · JFM 49.0340.01 [23] Rosinger, E.E.: Pseudotopological structures. Stud. Cercet. Mat. 14(2), 223–251 (1963) [24] Rosinger, E.E.: Pseudotopological structures II. Stud. Cercet. Mat. 16(9), 1085–1110 (1964) [25] Rosinger, E.E.: Pseudotopological structures III. Stud. Cercet. Mat. 17(7), 1133–1143 (1965) [26] Rosinger, E.E., van der Walt, J.H.: Beyond topology (2008, to appear) [27] Sendov, B.: Hausdorff Approximations. Kluwer Academic, Dordrecht (1990) [28] van der Walt, J.H.: Order convergence on Archimedean vector lattices. MSc Thesis, University of Pretoria (2006) [29] van der Walt, J.H.: The uniform order convergence structure on \(\mathcal{ML}(X)\) . Technical Report UPWT 2007/07 · Zbl 1145.54003 [30] van der Walt, J.H.: On the completion of uniform convergence spaces and an application to nonlinear PDEs. Technical Report UPWT 2007/14 [31] Wyler, O.: Ein komplettieringsfunktor für uniforme limesräume. Math. Nachr. 40, 1–12 (1970) · Zbl 0207.52603 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.