## An iterative algorithm for the reflexive solutions of the generalized coupled Sylvester matrix equations and its optimal approximation.(English)Zbl 1154.65023

A real matrix A of order $$n$$ is reflexive with respect to a real matrix $$P$$ if $$A=PAP$$, where $$P$$ is symmetric and involutory. An iterative algorithm for the generalized coupled Sylvester matrix equations over reflexive matrices is considered. The method is used to obtain a reflexive solution pair and under certain conditions the least Frobenius norm reflexive solution pair can also be computed. Some examples illustrate the presentation.

### MSC:

 65F30 Other matrix algorithms (MSC2010) 15A24 Matrix equations and identities
Full Text:

### References:

 [1] Axelsson, O., Iterative Solution Methods (1996), Cambridge University Press · Zbl 0845.65011 [2] Bao, L.; Lin, Y.; Wei, Y., A new projection method for solving large Sylvester equations, Appl. Numer. Math., 57, 521-532 (2007) · Zbl 1118.65028 [3] Chen, H. C., Generalized reflexive matrices: special properties and applications, SIAM J. Matrix Anal. Appl., 19, 140-153 (1998) · Zbl 0910.15005 [4] Chen, H. C.; Sameh, A., Numerical linear algebra algorithms on the ceder system, (Noor, A. K., Parallel Computations and their Impact on Mechanics, vol. 86 (1987), AMD, The American Society of Mechanical Engineers), 101-125 [5] H.C. Chen, The SAS domain decomposition method for structural analysis, CSRD Teach, report 754, Center for Supercomputing Research and Development, University of Illinois, Urbana, IL, 1988.; H.C. Chen, The SAS domain decomposition method for structural analysis, CSRD Teach, report 754, Center for Supercomputing Research and Development, University of Illinois, Urbana, IL, 1988. [6] Chu, K. E., Symmetric solutions of linear matrix equations by matrix decompositions, Linear Algebra Appl., 119, 35-50 (1989) · Zbl 0688.15003 [7] Cvetković-Iliíc, D. S., The reflexive solutions of the matrix equations $$AXB =C$$, Comput. Math. Appl., 51, 879-902 (2006) · Zbl 1136.15011 [8] Datta, B. N., Numerical Linear Algebra and Applications (1995), Brooks/Cole Publishing Co.: Brooks/Cole Publishing Co. Pacific Grove, CA · Zbl 1182.65001 [9] Ding, F.; Chen, T., Gradient based iterative algorithms for solving a class of matrix equations, IEEE Trans. Autom. Control, 50, 1216-1221 (2005) · Zbl 1365.65083 [10] Ding, F.; Chen, T., Iterative least squares solutions of coupled Sylvester matrix equations, Syst. Control Lett., 54, 95-107 (2005) · Zbl 1129.65306 [11] Ding, F.; Chen, T., Hierarchical gradient-based identification of multivariable discrete-time systems, Automatica, 41, 315-325 (2005) · Zbl 1073.93012 [12] Ding, F.; Chen, T., Hierarchical least squares identification methods for multivariable systems, IEEE Trans. Autom. Control, 50, 397-402 (2005) · Zbl 1365.93551 [13] Ding, F.; Chen, T., On iterative solutions of general coupled matrix equations, SIAM J. Control Optim., 44, 2269-2284 (2006) · Zbl 1115.65035 [14] Ding, F.; Liu, P. X.; Ding, J., Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Appl. Math. Comput., 197, 41-50 (2008) · Zbl 1143.65035 [15] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), The Johns Hopkins University Press: The Johns Hopkins University Press Baltimore and London · Zbl 0865.65009 [16] Guennouni, A. E.; Jbilou, K.; Riquet, A. J., Block Krylov subspace methods for solving large Sylvester equations, Numer. Algor., 29, 75-96 (2002) · Zbl 0992.65040 [17] Higham, N. J., Computing a nearest symmetric positive semidefinite matrix, Linear Algebra Appl., 103, 103-118 (1988) · Zbl 0649.65026 [18] Horn, R. A.; Johnson, C. R., Topics in Matrix Analysis (1991), Cambridge University Press · Zbl 0729.15001 [19] Huang, G.-X.; Yin, F.; Guo, K., An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation $$AXB = C$$, J. Comput. Appl. Math., 212, 231-244 (2008) · Zbl 1146.65036 [20] Kirrinnis, P., Fast algorithms for the Sylvester equation $$AX - XB^T = C$$, Theoret. Comput. Sci., 259, 623-638 (2001) · Zbl 0972.68183 [21] Ka˙gström, B.; Westin, L., Generalized Schur methods with condition estimators for solving the generalized Sylvester equation, IEEE Trans. Autom. Control, 34, 745-751 (1989) · Zbl 0687.93025 [22] Ka˙gström, B.; Poromaa, P., Distributed and shared memory block algorithms for the triangular Sylvester equation with $$sep^{- 1}$$ estimators, SIAM J. Matrix Anal. Appl., 13, 90-101 (1992) · Zbl 0746.65027 [23] Ka˙gström, B.; Poromaa, P., LAPACK-style algorithms and software for solving the generalized Sylvester equation and estimating the separation between regular matrix pairs, ACM Trans. Math. Software, 22, 78-103 (1996) · Zbl 0884.65031 [24] Lin, Y., Minimal residual methods augmented with eigenvectors for solving Sylvester equations and generalized Sylvester equations, Appl. Math. Comput., 181, 487-499 (2006) · Zbl 1148.65029 [25] Navarra, A.; Odell, P. L.; Young, D. M., A Representation of the general common solution to the matrix equations $$A_1 XB_1 = C_1$$ and $$A_2 XB_2 = C_2$$ with applications, Comput. Math. Appl., 41, 929-935 (2001) · Zbl 0983.15016 [26] Peng, Z. Y.; Hu, X. Y., The reflexive and antireflexive solutions of the matrix equation $$AX = C$$, Linear Algebra Appl., 375, 147-155 (2003) · Zbl 1050.15016 [27] Peng, Y.-X.; Hu, X.-Y.; Zhang, L., An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation $$AXB =C$$, Appl. Math. Comput., 160, 763-777 (2005) · Zbl 1068.65056 [28] Peng, Z.-Y.; Peng, Y.-X., An efficient iterative method for solving the matrix equation $$AXB + CYD = E$$, Numer. Linear Algebra Appl., 13, 473-485 (2006) · Zbl 1174.65389 [29] Peng, Z.-H.; Hu, X.-Y.; Zhang, L., An efficient algorithm for the least-squares reflexive solution of the matrix equation $$A_1 XB_1 = C_1, A_2 XB_2 = C_2$$, Appl. Math. Comput., 181, 988-999 (2006) · Zbl 1115.65048 [30] Robbé, M.; Sadkane, M., Use of near-breakdowns in the block Arnoldi method for solving large Sylvester equations, Appl. Numer. Math., 58, 486-498 (2008) · Zbl 1136.65046 [31] Xu, G.; Wei, M.; Zheng, D., On solutions of matrix equation $$AXB + CYD = F$$, Linear Algebra Appl., 279, 93-109 (1998) · Zbl 0933.15024 [32] Wang, Q. W., A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl., 384, 43-54 (2004) · Zbl 1058.15015 [33] Wang, Q. W., A system of four matrix equations over von Neumann regular rings and Its applications, Acta Math. Sinica, English Ser. Apr., 21, 323-334 (2005) · Zbl 1083.15021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.