×

Unsteady thin-film flow over a heated stretching sheet. (English) Zbl 1157.80366

Summary: The unsteady flow in a thin viscous liquid film over a heated horizontal stretching surface are analyzed considering the stretching velocity and the temperature distribution in their general forms. An evolution equation for the film thickness, that retains the convective heat transport effects, is derived using long-wave theory of thin liquid film and is solved numerically for some representative values of non-dimensional parameters. It is observed that the thermocapillary effects are responsible in shaping the film thickness. Further the thermocapillary effects are more pronounced for lower values of Prandtl number and Biot number.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76T10 Liquid-gas two-phase flows, bubbly flows
76D45 Capillarity (surface tension) for incompressible viscous fluids
76M20 Finite difference methods applied to problems in fluid mechanics
65H10 Numerical computation of solutions to systems of equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Crane, L. J.: Flow past a stretching plate, Z. angew. Math. phys. (ZAMP) 21, 645-647 (1970)
[2] Andersson, H. I.; Aarseth, J. B.; Dandapat, B. S.: Heat transfer in a liquid film on an unsteady stretching surface, Int. J. Heat mass transfer 43, 69-74 (2000) · Zbl 1042.76507 · doi:10.1016/S0017-9310(99)00123-4
[3] Wang, C. Y.: Liquid film on an unsteady stretching surface, Q. appl. Math. 48, 601-610 (1990) · Zbl 0714.76036
[4] Dandapat, B. S.; Santra, B.; Andersson, H. I.: Thermocapillarity in a liquid film on an unsteady stretching surface, Int. J. Heat mass transfer 46, 3009-3015 (2003) · Zbl 1048.76502 · doi:10.1016/S0017-9310(03)00078-4
[5] Chen, C. H.: Marangoni effects on forced convection of power-law liquids in a thin film over a stretching surface, Phys. lett. A 370, 51-57 (2007)
[6] Dandapat, B. S.; Santra, B.; Vajravelu, K.: The effects of variable fluid properties and thermocapillarity on the flow of a thin film on an unsteady stretching sheet, Int. J. Heat mass transfer 50, 991-996 (2007) · Zbl 1124.80317 · doi:10.1016/j.ijheatmasstransfer.2006.08.007
[7] Dandapat, B. S.; Kitamura, A.; Santra, B.: Transient film profile of thin liquid film flow on a stretching surface, Z. angew. Math. phys. (ZAMP) 57, 623-635 (2006) · Zbl 1095.76005 · doi:10.1007/s00033-005-0040-7
[8] Dandapat, B. S.; Maity, S.: Flow of a thin liquid film on an unsteady stretching sheet, Phys. fluids 18, 102101 (2006) · Zbl 1185.76438 · doi:10.1063/1.2360256
[9] B. Santra, B.S. Dandapat, Thin film flow over a nonlinear stretching sheet, Z. Angew. Math. Phys. (ZAMP) (2008) (accepted for publication). · Zbl 1169.76005
[10] Trevelyan, P. M. J.; Kalliadasis, S.: Wave dynamics on a thin-liquid film falling down a heated wall, J. eng. Math. 50, 177-208 (2004) · Zbl 1074.76009 · doi:10.1007/s10665-004-1016-x
[11] Trevelyan, P. M. J.; Scheid, B.; Ruyer-Quil, C.; Kalliadasis, S.: Heated falling films, J. fluid mech. 592, 295-334 (2007) · Zbl 1128.76006 · doi:10.1017/S0022112007008476
[12] Oron, A.; Bankoff, S. G.: Dynamics of a condensing liquid film under conjoining/disjoining pressures, Phys. fluids 13, 1107-1117 (2001) · Zbl 1184.76408 · doi:10.1063/1.1355022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.