Beer, Gerald; Levi, Sandro Strong uniform continuity. (English) Zbl 1161.54003 J. Math. Anal. Appl. 350, No. 2, 568-589 (2009). Strong local continuity is a relative concept: if \(f:X\to Y\) is a continuous map between metric spaces then not only is \(f\upharpoonright K\) uniformly continuous whenever \(K\) is compact: the \(\delta>0\) that corresponds to the given \(\epsilon>0\) satisfies the implication “if \(d(x,y)<\delta\) then \(d(f(x),f(y))<\epsilon\)” even when just one of \(x\) and \(y\) belongs to \(K\). This state of affairs is abbreviated as: \(f\) is strongly uniformly continuous on \(K\). The authors study this concept in some depth. They compare the families \(\mathcal{B}^f=\{B:f\upharpoonright B\) is uniformly continuous\(\}\) and \(\mathcal{B}_f=\{B:f\) is strongly uniformly continuous on \(B\}\); the latter is an ideal (and a bornology if \(f\) is continuous), the former need not be.In the second part of the paper the attention shifts to function space topologies; for a bornology \(\mathcal{B}\) the authors study the topology of strong uniform convergence on members of \(\mathcal{B}\) (derived from a uniformity wherein closeness of functions is required on neighbourhoods of members of \(\mathcal{B}\)). Reviewer: K. P. Hart (Delft) Cited in 7 ReviewsCited in 45 Documents MSC: 54C05 Continuous maps 54C10 Special maps on topological spaces (open, closed, perfect, etc.) 54C35 Function spaces in general topology 54E15 Uniform structures and generalizations Keywords:uniform continuity; strong uniform continuity; bornology; oscillation PDF BibTeX XML Cite \textit{G. Beer} and \textit{S. Levi}, J. Math. Anal. Appl. 350, No. 2, 568--589 (2009; Zbl 1161.54003) Full Text: DOI References: [1] Arens, R., A topology for spaces of transformations, Ann. of Math., 47, 480-495 (1946) · Zbl 0060.39704 [2] Arens, R.; Dugundji, J., Topologies for function spaces, Pacific J. Math., 1, 5-31 (1951) · Zbl 0044.11801 [3] Atsuji, M., Uniform continuity of continuous functions of metric spaces, Pacific J. Math., 8, 11-16 (1958) · Zbl 0082.16207 [4] Attouch, H.; Lucchetti, R.; Wets, R., The topology of the \(ρ\)-Hausdorff distance, Ann. Mat. Pura Appl., 160, 303-320 (1991) · Zbl 0769.54009 [5] Beer, G., More about metric spaces on which continuous functions are uniformly continuous, Bull. Austral. Math. Soc., 33, 397-406 (1986) · Zbl 0573.54026 [6] Beer, G., Conjugate convex functions and the epi-distance topology, Proc. Amer. Math. Soc., 108, 117-126 (1990) · Zbl 0681.46014 [7] Beer, G., Topologies on Closed and Closed Convex Sets (1993), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht · Zbl 0792.54008 [8] Beer, G., On metric boundedness structures, Set-Valued Anal., 7, 195-208 (1999) · Zbl 0951.54025 [9] Beer, G.; Di Concilio, A., Uniform continuity on bounded sets and the Attouch-Wets topology, Proc. Amer. Math. Soc., 112, 235-243 (1991) · Zbl 0677.54007 [11] Beer, G.; Levi, S., Pseudometrizable bornological convergence is Attouch-Wets convergence, J. Convex Anal., 15, 439-453 (2008) · Zbl 1173.54002 [12] Borsik, J., Mappings that preserve Cauchy sequences, Časopis Pro Pěstování Mat., 113, 280-285 (1988) · Zbl 0657.54024 [13] Brandi, P.; Ceppitelli, R., A new graph topology. Connections with the compact-open topology, Appl. Anal., 53, 185-196 (1994) · Zbl 0836.54010 [15] Caterino, A.; Panduri, T.; Vipera, M., Boundedness, one-point extensions, and B-extensions, Math. Slovaca, 58, 1, 101-114 (2008) · Zbl 1164.54018 [16] Di Concilio, A.; Naimpally, S., Proximal convergence, Monatsh. Math., 103, 93-102 (1987) · Zbl 0607.54013 [17] Di Maio, G.; Meccariello, E.; Naimpally, S., Decompositions of UC spaces, Questions Answers Gen. Topology, 22, 13-22 (2004) · Zbl 1060.54016 [18] Di Maio, G.; Naimpally, S., Proximal graph topologies, Questions Answers Gen. Topology, 10, 97-125 (1992) · Zbl 0802.54009 [19] Dugundji, J., Topology (1989), Wm.C. Brown Publishers: Wm.C. Brown Publishers Dubuque, IA [20] Engleking, R., General Topology (1977), Polish Scientific Publishers: Polish Scientific Publishers Warsaw [21] Hogbe-Nlend, H., Bornologies and Functional Analysis (1977), North-Holland: North-Holland Amsterdam · Zbl 0359.46004 [22] Hu, S.-T., Boundedness in a topological space, J. Math. Pures Appl., 228, 287-320 (1949) · Zbl 0041.31602 [23] Klein, E.; Thompson, A., Theory of Correspondences (1984), Wiley: Wiley New York [24] Jain, T.; Kundu, S., Atsuji completions: Equivalent characterisations, Topology Appl., 154, 28-38 (2007) · Zbl 1110.54015 [25] Lechicki, A.; Levi, S.; Spakowski, A., Bornological convergences, J. Math. Anal. Appl., 297, 751-770 (2004) · Zbl 1062.54012 [26] Levine, N.; Saunders, W., Uniformly continuous sets in metric spaces, Amer. Math. Monthly, 67, 153-156 (1960) · Zbl 0087.37703 [27] Lucchetti, R., Convexity and Well-Posed Problems (2006), Springer-Verlag: Springer-Verlag New York · Zbl 1106.49001 [28] McCoy, R.; Ntantu, I., Topological Properties of Spaces of Continuous Functions (1988), Springer-Verlag: Springer-Verlag Berlin · Zbl 0647.54001 [29] Naimpally, S.; Warrack, B., Proximity Spaces (1970), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0206.24601 [30] Snipes, R. F., Functions that preserve Cauchy sequences, Nieuw Arch. Voor Wiskd., 25, 409-422 (1977) · Zbl 0376.54011 [31] Willard, S., General Topology (1970), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0205.26601 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.