×

Strongly clean matrix rings over commutative local rings. (English) Zbl 1162.16016

Throughout \(R\) is an associative ring with identity. A ring is called strongly clean if every element is the sum of an idempotent and a unit that commute with each other.
The authors completely characterize the commutative local rings \(R\) for which the matrix ring \(\mathbb{M}_n(R)\) is strongly clean, in terms of factorization in \(R[t]\). Among several other results, it is shown that for any monic polynomial \(f\in R[t]\) , the strong cleanness of the companion matrix of \(f\) is equivalent to the strong cleanness of all matrices with characteristic polynomial \(f\). Various interesting examples are given and open questions are raised.

MSC:

16S50 Endomorphism rings; matrix rings
16U60 Units, groups of units (associative rings and algebras)
13H99 Local rings and semilocal rings
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Armendariz, E.P.; Fisher, J.W.; Snider, R.L., On injective and surjective endomorphisms of finitely generated modules, Comm. algebra, 6, 7, 659-672, (1978) · Zbl 0383.16014
[2] G. Borooah, Clean conditions and incidence rings, Ph.D. Dissertation, University of California, Berkeley, 2005
[3] Borooah, G.; Diesl, A.J.; Dorsey, T.J., Strongly Clean triangular matrix rings over local rings, J. algebra, 312, 2, 773-797, (2007) · Zbl 1144.16023
[4] Bourbaki, N., (), translated from the French
[5] Camillo, V.P.; Khurana, D.; Lam, T.Y.; Nicholson, W.K.; Zhou, Y., Continuous modules are Clean, J. algebra, 304, 1, 94-111, (2006) · Zbl 1114.16023
[6] Camillo, V.P.; Yu, H.-P., Exchange rings, units and idempotents, Comm. algebra, 22, 12, 4737-4749, (1994) · Zbl 0811.16002
[7] Cedó, F.; Rowen, L.H., Addendum to: “examples of semiperfect rings”, Israel J. math., 65, 3, 273-283, (1989), MR1005011 (90j:16054)] by Rowen, Israel J. Math. 107 (1998) 343-348 · Zbl 0677.16011
[8] Chen, W., A question on strongly Clean rings, Comm. algebra, 34, 7, 2347-2350, (2006) · Zbl 1098.16003
[9] Chen, J.; Yang, X.; Zhou, Y., On strongly Clean matrix and triangular matrix rings, Comm. algebra, 34, 10, 3659-3674, (2006) · Zbl 1114.16024
[10] Chen, J.; Yang, X.; Zhou, Y., When is the 2×2 matrix ring over a commutative local ring strongly Clean?, J. algebra, 301, 1, 280-293, (2006) · Zbl 1110.16029
[11] Dischinger, F., Sur LES anneaux fortement \(\pi\)-réguliers, C. R. acad. sci. Paris Sér. A-B, 283, 8, A571-A573, (1976), Aii
[12] Goodearl, K.R., Von Neumann regular rings, (1991), Robert E. Krieger Publishing Co. Inc. Malabar, FL · Zbl 0749.16001
[13] Han, J.; Nicholson, W.K., Extensions of Clean rings, Comm. algebra, 29, 6, 2589-2595, (2001) · Zbl 0989.16015
[14] Huh, C.; Kim, N.K.; Lee, Y., Examples of strongly \(\pi\)-regular rings, J. pure appl. algebra, 189, 1-3, 195-210, (2004) · Zbl 1059.16007
[15] Hungerford, T.W., Algebra, (1974), Holt, Rinehart and Winston, Inc. New York · Zbl 0293.12001
[16] Lam, T.Y., Lectures on modules and rings, () · Zbl 0911.16001
[17] Lam, T.Y., ()
[18] Lam, T.Y., ()
[19] Li, Y., Strongly Clean matrix rings over local rings, J. algebra, 312, 1, 397-404, (2007) · Zbl 1117.16017
[20] Nicholson, W.K., Lifting idempotents and exchange rings, Trans. amer. math. soc., 229, 269-278, (1977) · Zbl 0352.16006
[21] Nicholson, W.K., Strongly Clean rings and fitting’s lemma, Comm. algebra, 27, 8, 3583-3592, (1999) · Zbl 0946.16007
[22] Rowen, L.H., Examples of semiperfect rings, Israel J. math., 65, 3, 273-283, (1989) · Zbl 0677.16011
[23] Spiegel, E.; O’Donnell, C.J., ()
[24] Vasconcelos, W.V., On finitely generated flat modules, Trans. amer. math. soc., 138, 505-512, (1969) · Zbl 0175.03603
[25] Wang, Z.; Chen, J., On two open problems about strongly Clean rings, Bull. austral. math. soc., 70, 2, 279-282, (2004) · Zbl 1069.16035
[26] Yang, X.; Zhou, Y., Some families of strongly Clean rings, Linear algebra appl., 425, 1, 119-129, (2007) · Zbl 1122.16027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.