Ding, Feng; Chen, Tongwen Combined parameter and output estimation of dual-rate systems using an auxiliary model. (English) Zbl 1162.93376 Automatica 40, No. 10, 1739-1748 (2004). Summary: For a dual-rate sampled-data system, an auxiliary model based identification algorithm for combined parameter and output estimation is proposed. The basic idea is to use an auxiliary model to estimate the unknown noise-free output (true output) of the system, and directly to identify the parameters of the underlying fast single-rate model from the dual-rate input-output data. It is shown that the parameter estimation error consistently converges to zero under generalized or weak persistent excitation conditions and unbounded noise variance, and that the output estimates uniformly converge to the true outputs. An example is included. Cited in 84 Documents MSC: 93C57 Sampled-data control/observation systems 93B30 System identification Keywords:Dual-rate systems; Multirate systems; Identification; Parameter estimation; Output estimation; Output error identification; Least squares method PDF BibTeX XML Cite \textit{F. Ding} and \textit{T. Chen}, Automatica 40, No. 10, 1739--1748 (2004; Zbl 1162.93376) Full Text: DOI OpenURL References: [1] Adams, G. J., Albertos, P., Goodwin, G. C., & Isaksson, A. J. (1994). Parameter estimation for ARX models with missing data. IFAC Symposium on System Identification (SYSID’94), July 4-6, 1994, Copenhagen, Denmark, 163-168. [2] Arvanitis, K.; Kalogeropoulos, G.; Santos, E., Adaptive pole positioning in MIMO linear systems by periodic multirate-input controllers, Journal of mathematical analysis and applications, 237, 2, 464-504, (1999) · Zbl 0930.93049 [3] Chen, T.; Qiu, L., H∞ design of general multirate sampled-data control systems, Automatica, 30, 7, 1139-1152, (1994) · Zbl 0806.93038 [4] Ding, F., Convergence analysis of auxiliary model identification algorithm for multivariable systems, Control theory and applications, 14, 2, 192-200, (1997) [5] Ding, F., & Chen, T. (2003). Parameter identification and intersample output estimation of a class of dual-rate systems. 42nd IEEE conference on decision and control (CDC), Hawaii, USA, December 9-12, 2003 (pp. 5555-5560). [6] Ding, F.; Chen, T., Parameter estimation for dual-rate systems with finite measurement data, Dynamics of continuous, discrete and impulsive systems, series B: applications & algorithms, 11, 1, 101-121, (2004) · Zbl 1046.93011 [7] Ding, F., & Chen, T. (2004b). Identification of dual-rate systems based on finite impulse response models. International Journal of Adaptive Control and Signal Processing (in press). · Zbl 1055.93018 [8] Dugard, L.; Landau, I.D., Recursive output error identification algorithms theory and evaluation, Automatica, 16, 5, 443-462, (1980) · Zbl 0441.93025 [9] Goodwin, G.C.; Sin, K.S., Adaptive filtering, prediction and control, (1984), Prentice-Hall Englewood Cliffs, NJ · Zbl 0653.93001 [10] Gudi, R.D.; Shah, S.L.; Gray, M.R., Multirate state and parameter estimation in an antibiotic fermentation with delayed measurements, Biotechnology and bioengineering, 44, 12, 1271-1278, (1994) [11] Isaksson, A.J., Identification of ARX-models subject to missing data, IEEE transaction on automatic control, 38, 5, 813-819, (1993) · Zbl 0785.93028 [12] Khargonekar, P.P.; Poolla, K.; Tannenbaum, A., Robust control of linear time-invariant plants using periodic compensation, IEEE transaction on automatic control, 30, 11, 1088-1096, (1985) · Zbl 0573.93013 [13] Kranc, G.M., Input-output analysis of multirate feedback systems, IRE transactions on automatic control, 3, 1, 21-28, (1957) [14] Li, D.; Shah, S.L.; Chen, T., Identification of fast-rate models from multirate data, International journal of control, 74, 7, 680-689, (2001) · Zbl 1038.93017 [15] Li, D.; Shah, S.L.; Chen, T., Analysis of dual-rate inferential control systems, Automatica, 38, 6, 1053-1059, (2002) · Zbl 1038.93033 [16] Li, D.; Shah, S.L.; Chen, T.; Qi, K.Z., Application of dual-rate modeling to CCR octane quality inferential control, IEEE transactions on control systems technology, 11, 1, 43-51, (2003) [17] Ling, K.V.; Lim, K.W., A state-space GPC with extensions to multirate control, Automatica, 32, 1067-1071, (1996) · Zbl 0850.93260 [18] Lu, W.P.; Fisher, D.G., Output estimation with multi-rate sampling, International journal of control, 48, 1, 149-160, (1988) · Zbl 0647.93069 [19] Lu, W.P.; Fisher, D.G., Least-squares output estimation with multirate sampling, IEEE transactions on automatic control, 34, 6, 669-672, (1989) · Zbl 0678.93057 [20] Ohshima, M., Hashimoto, I., Takeda, M., Yoneyama, T., & Goto, F. (1992). Multirate multivariable model predictive control and its application to a semi-commercial polymerization reactor. Proceedings of the 1992 ACC, 2, Chicago, USA (pp. 1576-1581). [21] Qiu, L.; Chen, T., Multirate sampled-data systemsall H∞ suboptimal controllers and the minimum entropy controller, IEEE transactions on automatic control, 44, 537-550, (1999) · Zbl 0958.93031 [22] Sagförs, M.F.; Toivonen, H.T.; Lennartson, B., State-space solution to the periodic multirate H∞ control problema lifting approach, IEEE transactions on automatic control, 45, 2345-2350, (2000) · Zbl 0990.93027 [23] Scattolini, R., Self-tuning control of systems with infrequent and delayed output sampling, IEE Proceedings, part D, control theory and applications, 135, 4, 213-221, (1988) · Zbl 0665.93039 [24] Scattolini, R.; Schiavoni, N., A multirate model-based predictive controller, IEEE transactions on automatic control, 40, 1093-1097, (1995) · Zbl 0825.93970 [25] Sheng, J.; Chen, T.; Shah, S.L., Generalized predictive control for non-uniformly sampled systems, Journal of process control, 12, 8, 875-885, (2002) [26] Stoica, P.; Söderström, T., Analysis of an output error identification algorithm, Automatica, 17, 6, 861-863, (1981) · Zbl 0474.93064 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.