Right-veering diffeomorphisms of compact surfaces with boundary. (English) Zbl 1167.57008

Let \(S\) be a compact oriented surface with nonempty boundary, and let \(\operatorname{Aut}(S,\partial S)\) be the group of (isotopy classes of) diffeomorphisms of \(S\) which restrict to the identity on \(\partial S\). For two isotopy classes (relative to the endpoints) \(\alpha\) and \(\beta\) of properly embedded oriented arcs \([0, 1]\to S\) with a common initial point \(\alpha(0)=\beta(0)=x\in\partial S\), \(\beta\) is said to be the right of \(\alpha\) if either \(\alpha=\beta\) or the tangent vectors \((\dot\beta(0), \dot\alpha(0))\) define the orientation on \(T_xS\) after isotoping \(\alpha\) and \(\beta\) with endpoints fixed so that they intersect transversely and with the fewest possible number of intersections. A diffeomorphism \(h\in \operatorname{Aut}(S,\partial S)\) is called right-veering if every properly embedded arc \(\alpha\) on \(S\) is mapped to the right under \(h\) in the sense above. The set \(\text{Veer}(S,\partial S)\) of such diffeomorphisms is called the monoid of right-veering diffeomorphisms of \(S\). The main motivation to introduce these notions is motivated by Giroux’s work [E. Giroux, Proceedings of the international congress of mathematicians, ICM 2002, Beijing, China, August 20–28, 2002. Vol. II: Invited lectures. Beijing: Higher Education Press. 405–414 (2002; Zbl 1015.53049)] relating contact structures and open book decompositions.
The paper under review proves a highly nontrivial result: a contact structure \(\xi\) on a closed oriented \(3\)-manifold \(M\) is tight if and only if all of its open book decomposition \((S,h)\) have right-veering \(h\in\operatorname{Aut}(S,\partial S)\), where \(S\) is a compact oriented surface with boundary and \(h\in\operatorname{Aut}(S,\partial S)\) is the monodromy map. From this and the characterization of Stein fillable contact structures by Giroux it follows that the monoid \(\text{Dehn}^+(S,\partial S)\) of \(S\) of product of positive Dehn twists is strictly contained in Veer\((S,\partial S)\). The latter disproves a conjecture from J. Amorós, F. Bogomolov, L. Katzarkov and T. Pantev [J. Differ. Geom. 54, No. 3, 489–545 (2000; Zbl 1031.57021)].


57M50 General geometric structures on low-dimensional manifolds
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
57R17 Symplectic and contact topology in high or arbitrary dimension
53D35 Global theory of symplectic and contact manifolds
Full Text: DOI arXiv


[1] Akbulut, S., Ozbagci, B.: Lefschetz fibrations on compact Stein surfaces. Geom. Topol. 5, 319–334 (2001) (electronic) · Zbl 1002.57062
[2] Amorós, J., Bogomolov, F., Katzarkov, L., Pantev, T.: Symplectic Lefschetz fibrations with arbitrary fundamental groups, Appendix by I. Smith. J. Differ. Geom. 54, 489–545 (2000) · Zbl 1031.57021
[3] Bennequin, D.: Entrelacements et équations de Pfaff. Astérisque 107–108, 87–161 (1983) · Zbl 0573.58022
[4] Bonahon, F.: Closed Curves on Surfaces. Monograph in progress. · Zbl 0996.53029
[5] Casson, A., Bleiler, S.: Automorphisms of Surfaces after Nielsen and Thurston. Lond. Math. Soc. Stud. Texts, vol. 9. Cambridge University Press, Cambridge (1988) · Zbl 0649.57008
[6] Dehornoy, P.: Braid groups and left distributive operations. Trans. Am. Math. Soc. 345, 115–150 (1994) · Zbl 0837.20048 · doi:10.2307/2154598
[7] Ding, F., Geiges, H.: Symplectic fillability of tight contact structures on torus bundles. Algebr. Geom. Topol. 1, 153–172 (2001) (electronic) · Zbl 0974.53061
[8] Ding, F., Geiges, H., Stipsicz, A.: Surgery diagrams for contact 3-manifolds. Turk. J. Math. 28, 41–74 (2004) · Zbl 1077.53071
[9] Eliashberg, Y.: Classification of overtwisted contact structures on 3-manifolds. Invent. Math. 98, 623–637 (1989) · Zbl 0684.57012 · doi:10.1007/BF01393840
[10] Eliashberg, Y.: Unique holomorphically fillable contact structure on the 3-torus. Int. Math. Res. Not. 1996, p. 77–82 (1996) · Zbl 0852.58034
[11] Eliashberg, Y., Gromov, M.: Convex symplectic manifolds, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989). Proc. Symp. Pure Math., vol. 52, pp. 135–162. Am. Math. Soc., Providence, RI (1991) · Zbl 0742.53010
[12] Etnyre, J.: Lectures on open book decompositions and contact structures, Floer homology, gauge theory, and low-dimensional topology. Clay Math. Proc., vol. 5, pp. 103–141. Am. Math. Soc., Providence, RI (2006) · Zbl 1108.53050
[13] Etnyre, J., Honda, K.: Tight contact structures with no symplectic fillings. Invent. Math. 148, 609–626 (2002) · Zbl 1037.57020 · doi:10.1007/s002220100204
[14] Fathi, A., Laudenbach, F., Poenaru, V.: Travaux de Thurston sur les surfaces. Astérisque, vol. 66–67 (1979)
[15] Gabai, D.: Problems in foliations and laminations, In: Kazez, W.H. (ed.) Geometric Topology, pp. 1–33. AMS/IP Stud. Adv. Math., vol. 2.2, Am. Math. Soc., Providence, RI (1997) · Zbl 0888.57025
[16] Gabai, D., Oertel, U.: Essential laminations in 3-manifolds. Ann. Math. (2) 130, 41–73 (1989) · Zbl 0685.57007 · doi:10.2307/1971476
[17] Giroux, E.: Convexité en topologie de contact. Comment. Math. Helv. 66, 637–677 (1991) · Zbl 0766.53028 · doi:10.1007/BF02566670
[18] Giroux, E.: Géométrie de contact: de la dimension trois vers les dimensions supérieures. In: Proceedings of the International Congress of Mathematicians, Beijing, 2002, vol. II, pp. 405–414. Higher Ed. Press, Beijing (2002) · Zbl 1015.53049
[19] Gompf, R.: Handlebody construction of Stein surfaces. Ann. Math. (2) 148, 619–693 (1998) · Zbl 0919.57012 · doi:10.2307/121005
[20] Goodman, N.: Overtwisted open books from sobering arcs. Algebr. Geom. Topol. 5, 1173–1195 (2005) (electronic) · Zbl 1090.57020
[21] Goodman, N.: Contact structures and open books. Ph.D. thesis, University of Texas at Austin (2003)
[22] Honda, K.: On the classification of tight contact structures I. Geom. Topol. 4, 309–368 (2000) (electronic) · Zbl 0980.57010
[23] Honda, K.: Gluing tight contact structures. Duke Math. J. 115, 435–478 (2002) · Zbl 1026.53049 · doi:10.1215/S0012-7094-02-11532-4
[24] Honda, K., Kazez, W., Matić, G.: Tight contact structures on fibered hyperbolic 3-manifolds. J. Differ. Geom. 64, 305–358 (2003) · Zbl 1083.53082
[25] Honda, K., Kazez, W., Matić, G.: Right-veering diffeomorphisms of compact surfaces with boundary II. Preprint 2006. arXiv:math.GT/0603626 · Zbl 1170.57013
[26] Honda, K., Kazez, W., Matić, G.: Pinwheels and bypasses. Algebr. Geom. Topol. 5, 769–784 (2005) (electronic) · Zbl 1086.57016
[27] Lisca, P., Stipsicz, A.: An infinite family of tight, not semi-fillable contact three-manifolds. Geom. Topol. 7, 1055–1073 (2003) (electronic) · Zbl 1127.57302
[28] Lisca, P., Stipsicz, A.: Tight, not semi-fillable contact circle bundles. Math. Ann. 328, 285–298 (2004) · Zbl 1046.57018 · doi:10.1007/s00208-003-0483-0
[29] Loi, A., Piergallini, R.: Compact Stein surfaces with boundary as branched covers of B 4. Invent. Math. 143, 325–348 (2001) · Zbl 0983.32027 · doi:10.1007/s002220000106
[30] Nielsen, J.: Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen I. Acta Math. 50, 189–358 (1927) · doi:10.1007/BF02421324
[31] Nielsen, J.: Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen II. Acta Math. 53, 1–76 (1929) · doi:10.1007/BF02547566
[32] Nielsen, J.: Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen III. Acta Math. 58, 87–167 (1931) · doi:10.1007/BF02547775
[33] Thurston, W.: On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Am. Math. Soc., New Ser. 19, 417–431 (1988) · Zbl 0674.57008 · doi:10.1090/S0273-0979-1988-15685-6
[34] Thurston, W., Winkelnkemper, H.: On the existence of contact forms. Proc. Am. Math. Soc. 52, 345–347 (1975) · Zbl 0312.53028 · doi:10.1090/S0002-9939-1975-0375366-7
[35] Torisu, I.: Convex contact structures and fibered links in 3-manifolds. Int. Math. Res. Not. 2000, pp. 441–454 (2000) · Zbl 0978.53133
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.