×

Oscillation criteria for a forced second-order nonlinear dynamic equation. (English) Zbl 1168.34025

By means of a Riccati technique and the function class \(\{u\in C^1_{rd}({\mathbb{T}}): u(t)\not\equiv 0\) on \([a, b]\), \(u(a)=u(b)=0\}\), the authors establish new interval oscillation criteria for forced second-order nonlinear dynamic equations on time scales of the form
\[ \left(p(t)x^{\Delta}(t)\right)^{\Delta}+q(t)| x^\sigma(t)| ^\gamma \text{sgn}\,x^\sigma(t)=f(t),\quad t\in \mathbb{T}, \]
where \({\mathbb{T}}\) is a time scale and \(\gamma\geq 1\) is a constant. Four interesting examples are included to show the significance of the results.

MSC:

34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
39A10 Additive difference equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1016/S0377-0427(01)00432-0 · Zbl 1020.39008
[2] DOI: 10.1016/j.jmaa.2004.06.041 · Zbl 1062.34068
[3] DOI: 10.1080/1023619021000053575 · Zbl 1038.39009
[4] Akin-Bohner E., ETNA 27 pp 1– (2007)
[5] Beckenbach E.-F., Inequalities, Second Revised Printing (1965) · Zbl 0126.28002
[6] Bohner M., Dynamic Equations on Time Scales: An Introduction with Applications (2001) · Zbl 0978.39001
[7] Bohner M., Advances in Dynamic Equations on Time Scales, Editors (2003) · Zbl 1025.34001
[8] DOI: 10.1216/rmjm/1181069797 · Zbl 1075.34028
[9] DOI: 10.1016/S0377-0427(01)00442-3 · Zbl 1009.34033
[10] Erbe L., Can. Appl. Math. Q. 9 pp 1– (2001)
[11] Erbe L., Math. Comp. Model. Bound. Value Probl. Relat. Top. 32 pp 571– (2000)
[12] Peterson A., Proceedings of Dynamic Systems and Applications, vol 3 pp 193– (2001)
[13] DOI: 10.1016/S0377-0427(01)00444-7 · Zbl 1017.34030
[14] DOI: 10.1090/S0002-9939-03-07061-8 · Zbl 1055.39007
[15] DOI: 10.1016/S0022-247X(02)00390-6 · Zbl 1034.34042
[16] DOI: 10.1112/S0024610703004228 · Zbl 1050.34042
[17] DOI: 10.1016/j.cam.2004.11.021 · Zbl 1075.39010
[18] Hilger S., Results Math. 18 pp 18– (1990) · Zbl 0722.39001
[19] Kelley W., Difference Equations: An Introduction with Applications, 2. ed. (2001) · Zbl 0970.39001
[20] DOI: 10.1090/S0002-9939-98-04354-8 · Zbl 0891.34038
[21] S.H.G. Olumolode, N. Pennington, and A. Peterson, Oscillation of an Euler–Cauchy dynamic equation, (2002), pp. 24–27, Proceedings of the Fourth International Conference on Dynamical systems and differential equations, Wilmington · Zbl 1052.39007
[22] DOI: 10.1016/S0096-3003(02)00829-9 · Zbl 1045.39012
[23] DOI: 10.1016/j.cam.2004.09.028 · Zbl 1082.34032
[24] Whittaker E.T., Modern Analysis (1945)
[25] DOI: 10.1137/1017036 · Zbl 0295.34026
[26] DOI: 10.1006/jmaa.1998.6259 · Zbl 0922.34029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.